

00001000001101010100011111 0000100000111010110

Hadron Spectroscopy

Lecture I - Overview

HUGS - June 2, 2025

Alexander Austregesilo (Jefferson Lab) Alessandro Pilloni (Messina University)

About Us

Alexander Austregesilo – Jefferson Lab Staff Scientist - Experimental Nuclear Physics (Hall D)

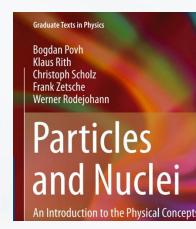
Ph.D. from Technical University of Munich, Germany Member of GlueX Collaboration Former member of COMPASS Collaboration

Contact: aaustreg@jlab.org

Alessandro Pilloni – Messina University Associate Professor

Ph.D. from Sapienza University of Rome, Italy Member of the JPAC Collaboration www.pillaus.it

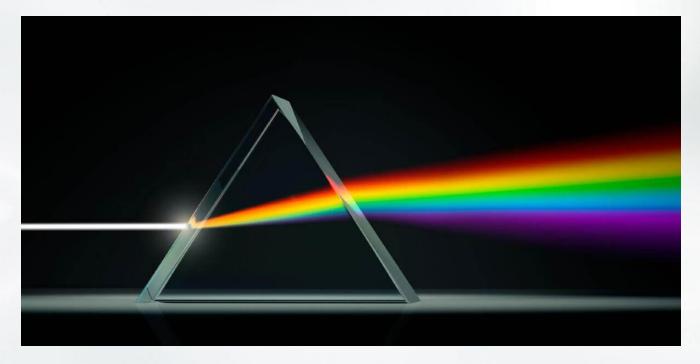
Contact: pillaus@jlab.org


6/5/2025 1 101110

Plan

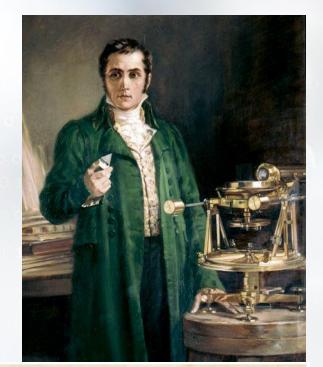
- 1. Lecture: General Introduction
- 2. Lecture: Scattering Theory Part 1
- 3. Lecture: Experimental Light Quark Spectroscopy
- 4. Lecture: Scattering Theory Part 2
- 5. Lecture: XYZ, P and T

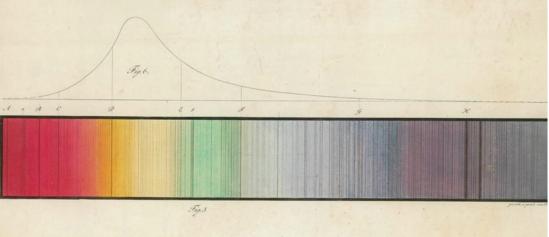
Useful References:



https://pdglive.lbl.gov/

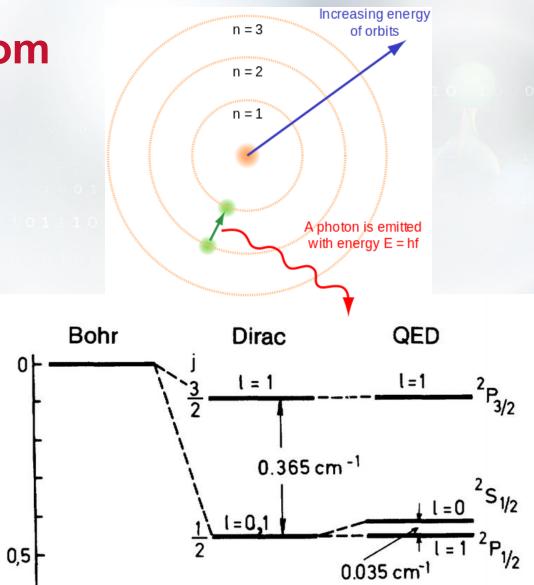
PARTICLE PHYSICS BOOKLET


Prologue: Spectroscopy



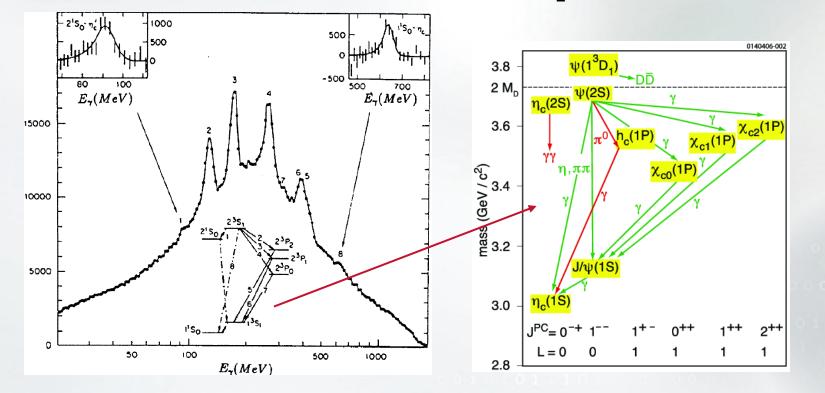
Joseph v. Fraunhofer (1787-1826)

- German Physicist and Glass Manufacturer
- Inventor of the Optical Spectroscope
- Independently discovered absorption lines in the spectrum of the sun in 1814
- Precisely mapped over 570 fixed dark lines in the spectrum
- 45 years later, some of the lines were identified as emission lines for heated chemical elements
- Atoms in the solar atmosphere absorb light emitted by the solar photosphere
- Fraunhofer also studied light from different stars: Founder of Stellar Spectroscopy
- Namesake of German "Fraunhofer Society" Europe's biggest society for applied research

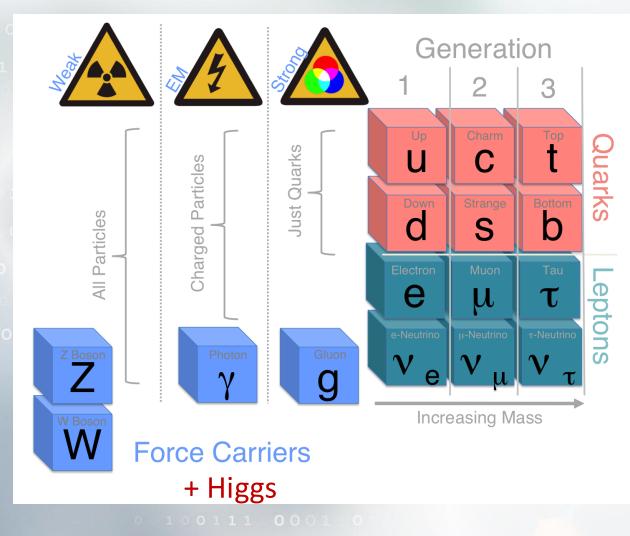


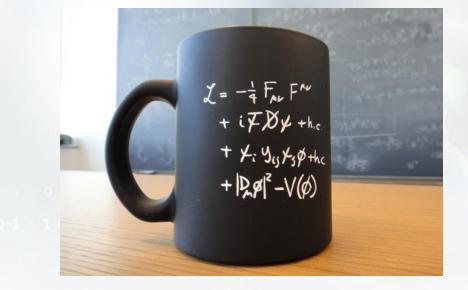
Spectroscopy of the Hydrogen Atom

- Emission spectrum of atomic hydrogen: Electron transitions between two energy levels
- Discrete levels explained by Bohr Model • Nobel Price 1922 (Bohr)
- Fine Splitting: electron spin and relativistic corrections • Measured in 1887 (Michelson, Morley) Explained by Dirac Equation (1928) Nobel Price 1933 (Dirac, Schrödinger)
- y Dirac Equation (1928) 1933 (Dirac, Schrödinger) Vacuum Energy Fluctuations 1947 (Lamb, Retherford) ed Quantum Field Theory (QED) 1955 (Lamb) 1965 (Tomonaga, Schwinger, Feynman) Lamb Shift: Vacuum Energy Fluctuations • Measured in 1947 (Lamb, Retherford) **Revolutionized Quantum Field Theory (QED)** Nobel Price 1955 (Lamb)


Take-away:

- Precise experimental studies lead to scientific advances
- Small deviations can have tremendous consequences
- May take years for results to be fully understood




Introduction: Hadron Spectroscopy

Standard Model of Particle Physics

EM and Weak Interactions:

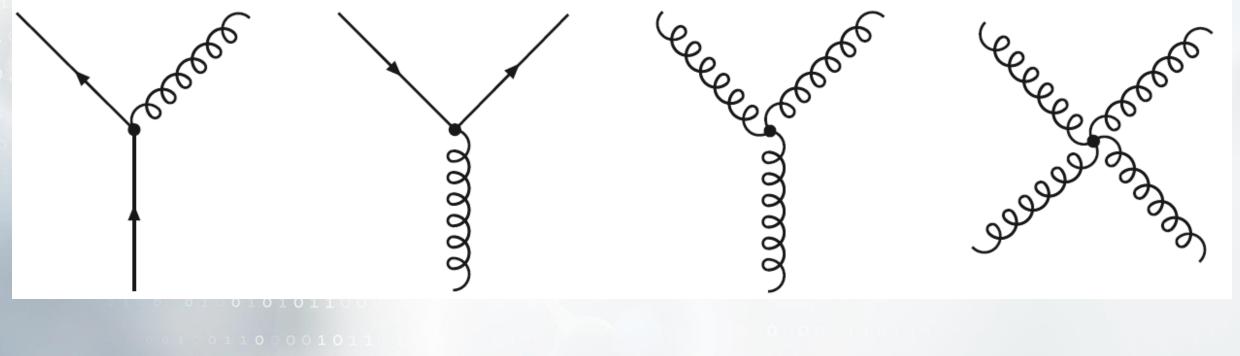
- Precise calculations with QFT
- Experimentally confirmed predictions

Strong Interaction:

 \rightarrow See Lectures by A. Simonelli, C. Weiss

1001010101100111100

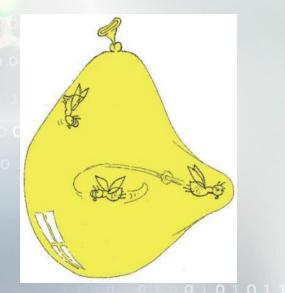
6/5/2025 1 101110

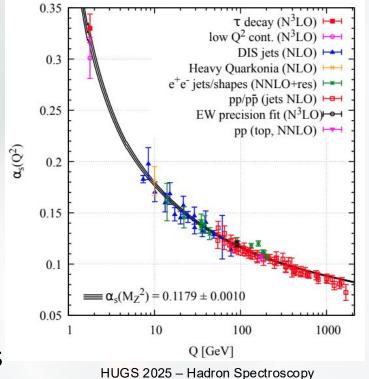

HUGS 2025 – Hadron Spectroscopy

Strong Interaction

Quantum Chromodynamics (QCD):

Color-charged Quarks interact via exchange of color-charged Gluons



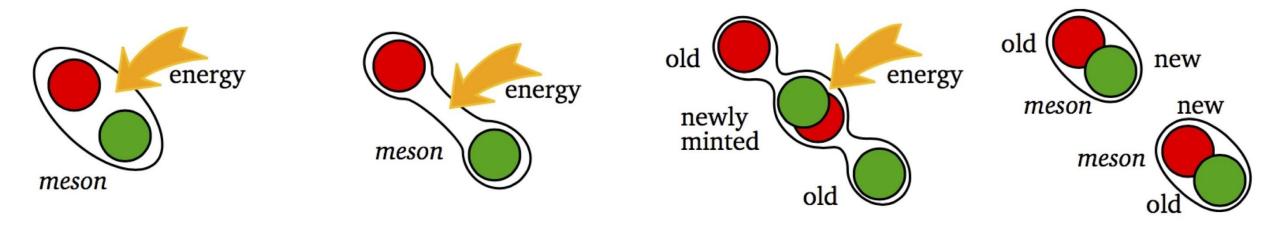

Strong Interaction

Quantum Chromodynamics (QCD):

- Color-charged Quarks interact via exchange of color-charged Gluons
- Confinement: only color-neutral objects can be observed in nature

Non-perturbative Regime: Small energies, large distances

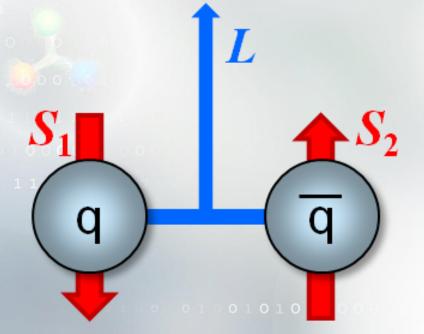
Asymptotic Freedom:


Large energies, small distances

Strong Interaction

Quantum Chromodynamics (QCD):

- Color-charged Quarks interact via exchange of color-charged Gluons
- Confinement: only color-neutral objects can be observed in nature
- Baryons and Mesons as relevant degrees of freedom



6/5/2025

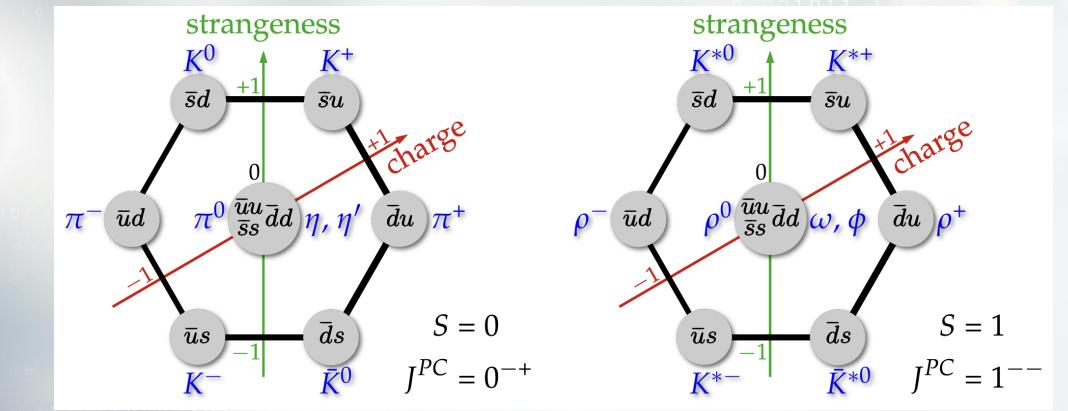
Meson Spectrum

- Study of the 'simplest' system $q\bar{q}$, equivalent to the hydrogen atom
- Characterize by quantum numbers, mass, lifetime, quark content, decay modes, ...

001001100001011

• Total intrinsic Spin: $S = S_1 + S_2 = 0$ or 1

- Angular Momentum L and Spin S couple to J
- Symmetry under space inversion: Parity $P = (-1)^{L+1}$
- Symmetry under particle exchange: Charge Conjugation $C = (-1)^{L+S}$

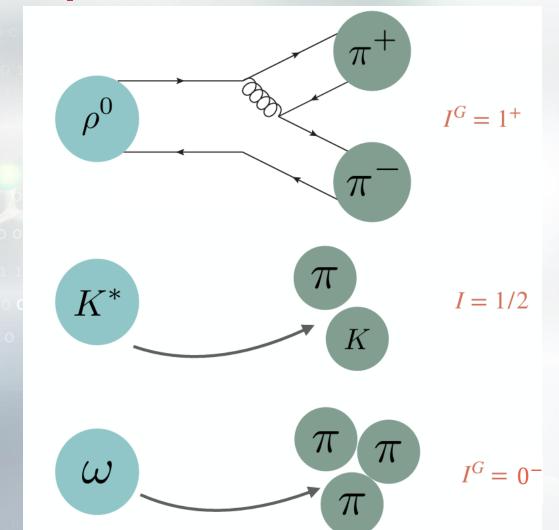

Exercise: allowed quantum numbers $J^{PC} = 0^{++}, 0^{-+}, 1^{--}, 1^{+-}, 2^{++}, \dots$ forbidden combinations $J^{PC} = ?$

HUGS 2025 – Hadron Spectroscopy

Light Quark Mesons

- Composed of u, d and s (anti)quarks
- Can be grouped into SU(3) flavor nonets

• Orbital and radial excitations → many more nonets


6/5/2025

101010110011111

HUGS 2025 – Hadron Spectroscopy

Isospin

Decays of Vector Mesons $J^{PC} = 1^{--}$ $m_u \approx m_d$: Isopin conservation

Classify Mesons with $I^{G}(J^{PC})$

Combine isospin rotation and charge conjugation:

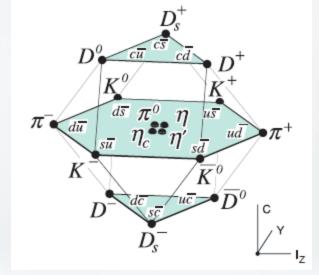
G Parity: $G = C(-1)^{I}$

 $I^{G}(J^{PC}) = 1^{-}(0^{-+})$

We have omitted some results that have been superseded by later experiments. The omitted results may be found in our 1988 edition Physics Letters **B204** 1 (1988).

 π^0

Notation

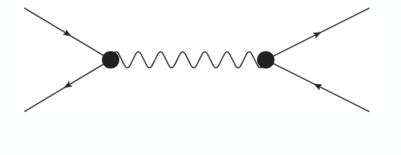

6/5/2025

- Classify Mesons with $I^G(J^{PC})$
- Many names are historical: π , ρ , ω , J/ψ
- Group by spin:
 Scalar (0⁺⁺), Pseudoscalar (0⁻⁺), Vector (1⁻⁻), Axial/Pseudovector (1^{+±}), Tensor (2⁺⁺), ...
- Names defined by Spin and Isospin:

$1^{-}(J^{++})$	0 ⁺ (J ⁺⁺)	$1^+(J^{+-})$	0 ⁻ (J ⁺⁻)	$1^{-}(J^{-+})$	$0^+(J^{-+})$
a_J	f_J	b_J	h _J	π_J	η_J

N.B.: Not all combinations allowed by quark model!

- Strange quarks: K ($d\bar{s}$, $u\bar{s}$), ϕ (s \bar{s})
- Charm quarks: D ($c\overline{u}, c\overline{d}$), D_s($c\overline{s}$), $\psi, \eta_c, h_c, \chi_c$ ($c\overline{c}$)
- Bottom quarks: B $(d\overline{b}, u\overline{b})$, B_s $(s\overline{b})$, Y, η_b , h_b , χ_b $(b\overline{b})$
- Exotic combinations: X, Y, Z, T, P


Quark Model

Coupling of vector mesons $J^{PC} = 1^{--}$ to photons

$$\rho^{0} \quad \frac{(u\bar{u} - d\bar{d})}{\sqrt{2}} \qquad \qquad \Gamma(\rho) \propto \frac{1}{2}(Q_{u} - Q_{d})^{2} = \frac{1}{18} \Omega$$

$$\phi \qquad s\bar{s} \qquad \qquad \Gamma(\phi) \propto \frac{1}{2}Q_{s}^{2} = \frac{1}{18} \Omega$$

$$\omega^{0} \quad \frac{(u\bar{u} + d\bar{d})}{\sqrt{2}} \qquad \qquad \Gamma(\omega) \propto \frac{1}{2}(Q_{u} + Q_{d})^{2} = \frac{1}{18} \Omega$$

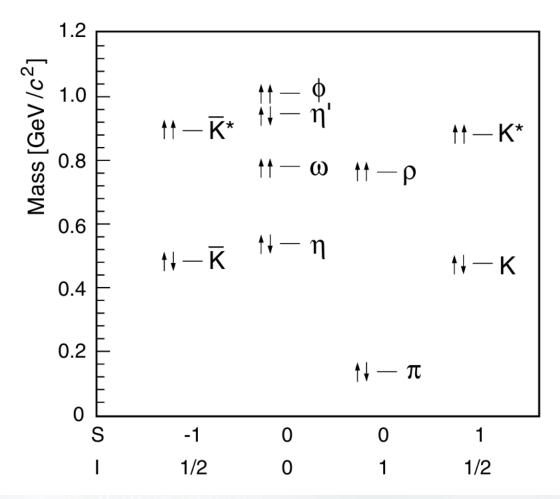
Theoretical expectation

$$\Gamma_{\rho^0}:\Gamma_{\omega^0}:\Gamma_{\phi}=9:1:2$$

Experiment

 (8.8 ± 2.6) : 1 : (1.7 ± 0.4)

100101010101100


Very successful description!

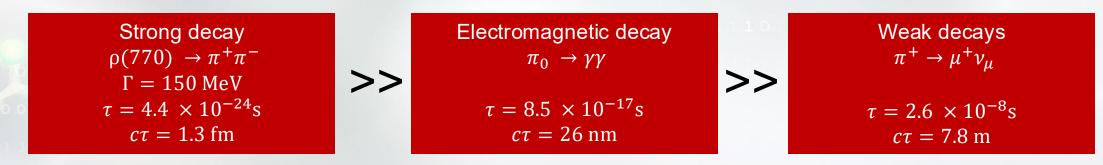
Quark Model

- Vector mesons about 400-600 MeV/ c^2 heavier than J = 0 counterparts
- Chromomagnetic spin-spin interaction (compare to hyperfine structure)
- Phenomenological formular with constituent quark masses

Meson	J^P	Ι	Mass	$[MeV/c^2]$
Meson	J 1	1	Calculated	-
π	0^{-}	1	140	$\begin{cases} 135.0 \ \pi^0 \\ 139.6 \ \pi^{\pm} \end{cases}$
K	0^{-}	1/2	485	$\begin{cases} 497.7 \text{ K}^{0} \\ 493.7 \text{ K}^{-} \end{cases}$
η	0^{-}	0	559	547.3
η'	0^{-}	0		957.8
ρ	1-	1	780	770.0
K*	1^{-}	1/2	896	$\begin{cases} 896.1 \text{ K}^{*0} \\ 891.7 \text{ K}^{*-} \end{cases}$
ω	1^{-}	0	780	781.9
ϕ	1^{-}	0	1032	1019.4

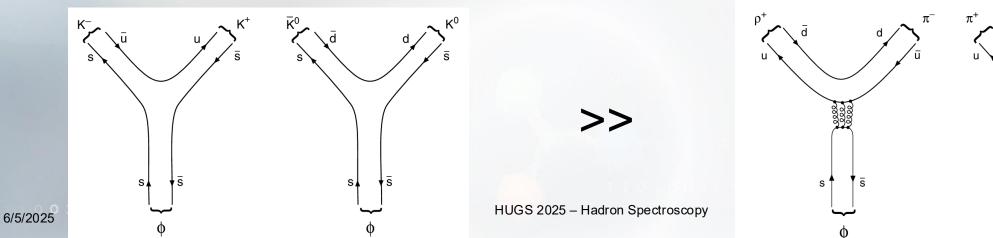
- Hadron Spectroscopy

6/5/2025


19

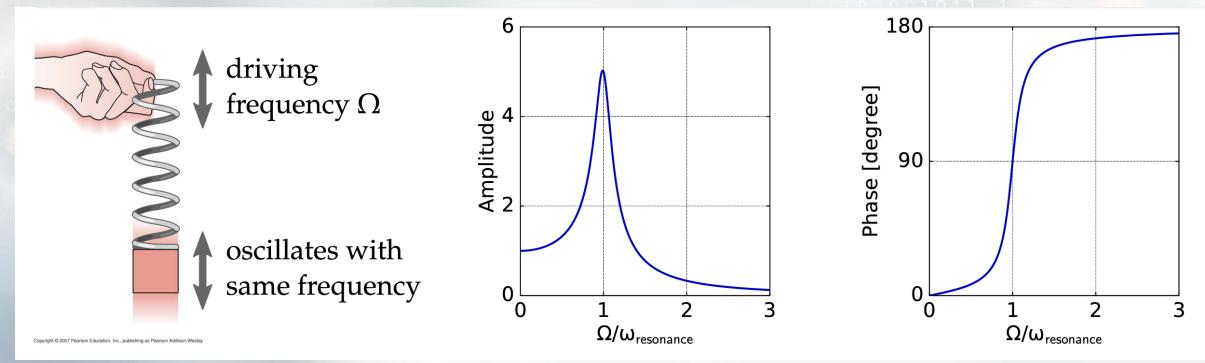
Hadron Decays

- Flavor is conserved by strong and EM force, not by weak force
- Strong decays dominate when allowed, electromagnetic decays are more likely than weak decays


Exercise: When are strong or EM decays forbidden?

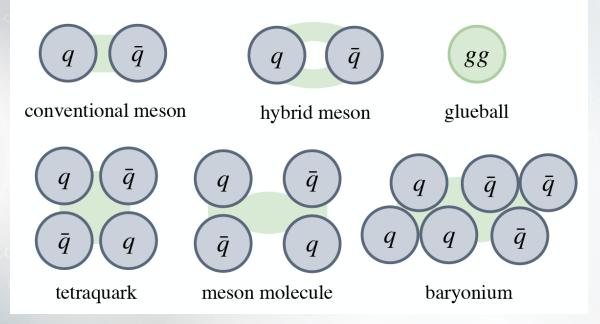
s

0000010


• Strong decays without $q\bar{q}$ annihilation are preferred (OZI suppression)

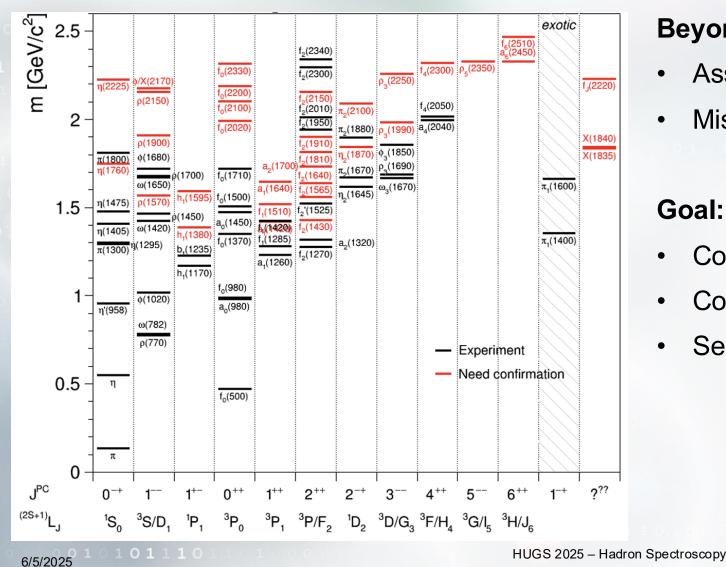
Resonances

- Most mesons decay via strong interaction -> lifetimes of $O(10^{-24} \text{ s})$
- Uncertainty principle -> inaccuracy in energy (=mass)


- Amplitude peaks at resonance mass
- Phase rises by 180 degrees, 90 at resonance

6/5/2025

Exotic Mesons


• QCD allows other color-neutral combinations of quarks and gluons

- Spin-exotic quantum numbers cannot be $q\bar{q}$: J^{PC} = 0⁻⁻, 0⁺⁻, 1⁻⁺, ...
- Establishing such states is proof for states beyond the constituent quark model
- Nature of exotic states can only be determined by models

Light Meson Spectrum

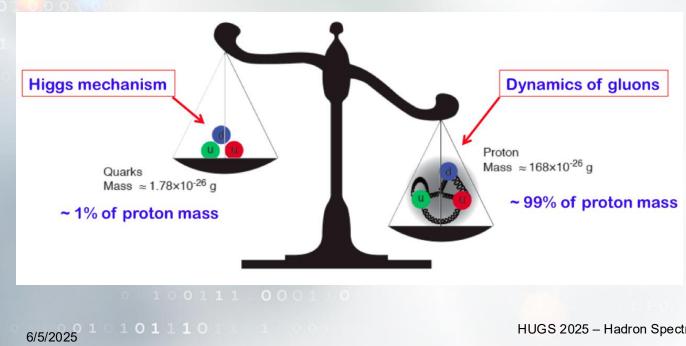
Beyond the ground states:

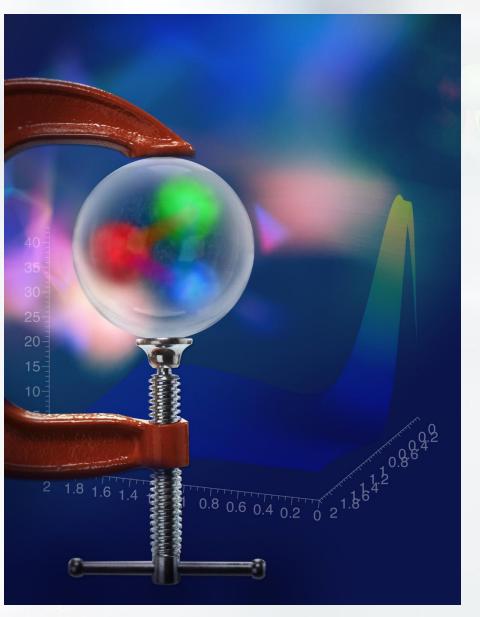
- Assignment to nonets not clear
- Missing states

Goal: Precision Measurement of Spectrum

- Confirm excited states
- Complete SU(3) nonets
- Search for exotic states

Take-away:


- Mesons identified by quantum numbers $I^G(J^{PC})$ and flavor
- Unambiguous naming scheme (PDG)
- Name only roughly mapped to quark content
- Experimental knowledge lacks precision



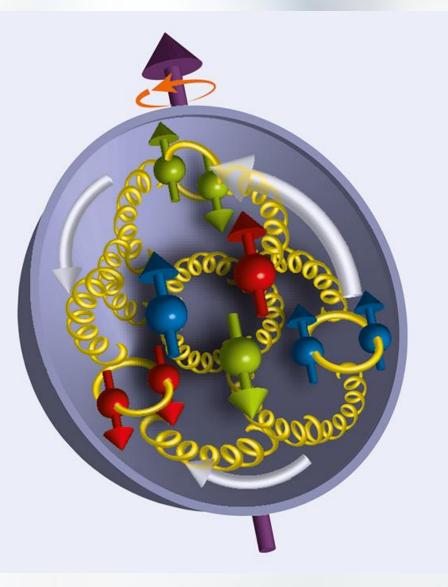
Baryon Spectrum: Proton

Quark content: uud Mass: 938 MeV/ c^2

- Current mass about 1% •
- How is 99% of the mass of the visible • universe generated?

Baryon Spectrum: Proton

Quark content: uud Mass: 938 MeV/*c*²


- Current mass about 1%
- How is 99% of the mass of the visible universe generated?

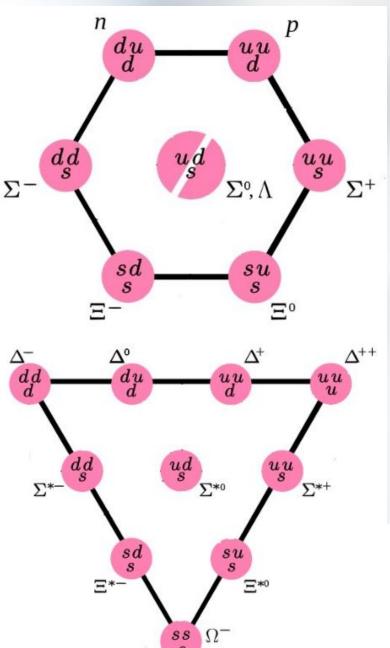
Spin 1/2

- Spin of quarks only ~30%
 Gluons? Angular momentum?
 Sea quark pairs?
 - \rightarrow See Lectures by Arun Tadepalli

Radius?

Excitation Spectrum?

Baryon Notation:

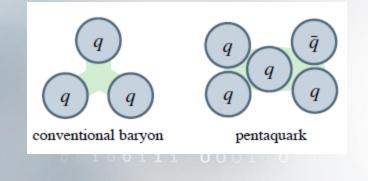

- Conserved Baryon Number B = 1
- Consistent with qqq configuration
- Naming Convention:

Non-S	trange		Strange Baryo	ons (Hyperons)	
I = 1/2	I = 3/2	I = 0	I = 1	I = 1/2	I = 0
Ν	Δ	Λ	Σ	Ξ "Cascade"	Ω

- Excited states with mass (Mev): $\Delta(1232)$
- Characterize by $I(J^P)$
- Historic spectroscopic notation from πN scattering: L_{2I,2J} (e.g. P₃₃(1232))
- Subscript *c*/*b* for charmed/bottom Baryons
- Pentaquark $P_{c\bar{c}}$: $uudc\bar{c}$

6/5/2025

HUGS 2025 – Hadron Spectroscopy

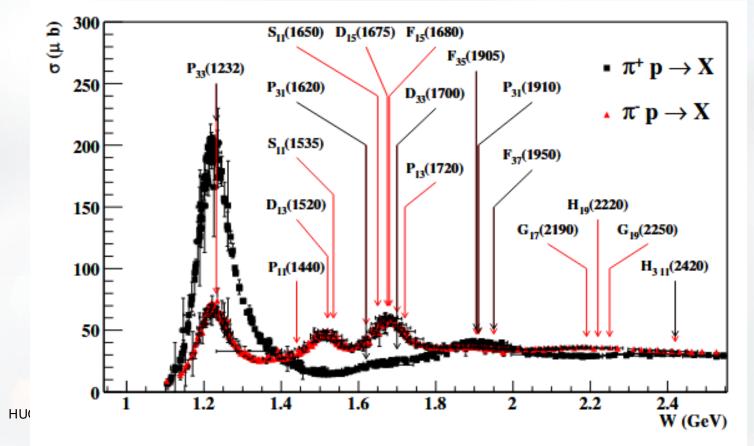


Baryon Spectroscopy:

• Large number of know states, use star rating:

****	Existence is certain, and properties are at least fairly explored
***	Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined.
**	Evidence of existence is only fair.
**	determined.

- * Evidence of existence is poor.
- No exotic quantum numbers, but many missing states or states without QN assignment (Y^*)
- Exotic multi-quark configurations:



6/5/2025

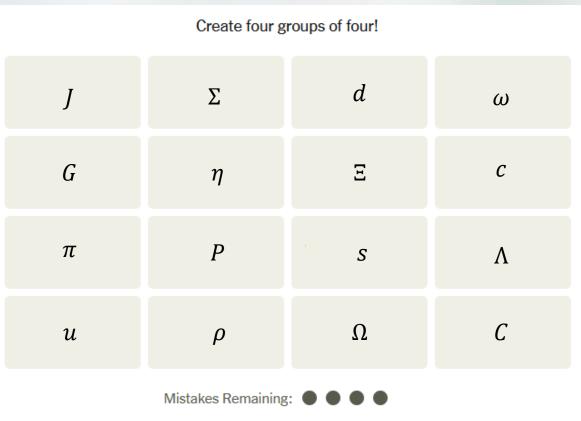
Baryon Spectroscopy:

- Large number of broad and overlapping states
- Impossible to disentangle via mass alone
 → Use as much additional information as possible
- Double polarization observables:
 Polarized targets + polarized beams
- Example: CLAS in Hall B

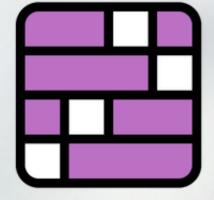
1001010101100111100

6/5/2025 1 0 1 1 1 0

1 1 0 0 0 1 1 0 1 0 0 0 0


Exercise: QED Analogy?

001100101100


Exercise: Connections

Deselect All

Submit

Shuffle

00110010110

QUESTIONS?

Thank you

For inspiration for this lecture series:

- Ryan Mitchell
- Arkaitz Rodas
- Justin Stevens
- Boris Grube

Exercise: QED Analogy?

- No free gluon radiation, no strong "ions"
- Short lifetime of states → not lines, but broad and overlapping in Energy/Mass
- Decay often not to ground state, but multi-particle final state
- Measured spectrum cannot be compared to first principles

Exercise: Connections

Create four groups of four!

LIGHT QUARKS *u, d, s, c*

LIGHT MESONS

 π,η,ρ,ω

HYPERONS Λ, Σ, Ξ, Ω

J, P, C, G

\square		

000110010110

