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Imaginary time

1T
Transition to imaginary time
<'O' . . .
%, Enabled by complex-analytic properties of amplitudes
- and correlation functions
4 Can be applied to individual amplitudes (Wick rotation)
or entire functional integral = generating function
elEht —> € —Eyt Time dependence = exponential decay



Imaginary time: Correlation functions
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0) lowest-mass hadron
0) higher-mass states

suppressed

Properties of lowest-mass
hadron states can be
obtained from large-time
limit of correlation functions

Masses, couplings to currents
Practical calculations: Trade-offs

Techniques beyond lowest-mass:
“Distillation”  Lecture Dudek



Imaginary time: Functional integral
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real, positive definite!

A(t,x) —  A(r,X)

QFT — statistical mechanics

—  Numerical simulations, Monte-Carlo methods
—  Concept of “contribution” of certain field configurations to correlation functions

— Semiclassical methods: Saddle point approximation

Imaginary-time representation limited to calculation of static properties
(= independent of real time), cannot be applied to real time dependent properties

Recent developments: Light-cone correlation functions



Imaginary time: Euclidean metric

Xy = (xl,xz, x3,x4) = (X, 7) Euclidean 4-vector
) 2 2 2 _ 2 2 . .
XX, = X +X +X3+x = IX|"+ 7 Euclidean metric

same for momenta, other 4-vectors

For computation of imaginary-time correlation functions,
QFT is formulated in 4D Euclidean space

4D rotational invariance O(4)
No difference between “space” and “time” directions!

All Euclidean distances/vectors are space-like
Euclidean 4-vectors correspond to spacelike Minkowskian 4-vectors



Vacuum fields: Cooled lattice QCD configurations 6

What are the gauge field configurations
giving rise to non-perturbative structure
of QCD vacuum?

Inspect lattice QCD configurations!

Usual field configurations are “rough”:
Contain quantum fluctuations of any
wavelength

Cooling of lattice QCD configurations
identifies “smooth” field configurations

G, G, (x) G G, Strong features: Concentrations of
action and topological charge density

Fig: Chu, Grandy, Huang, Negele 1993

Alt technique: Gradient flow = systematic “smoothing” transformation of lattice QCD configurations.
Controlled by parameter, reversible

see e.g. Bonati, D’Elia 2014; Athenodorou et al. 2018; Alexandrou et al. 2020



Vacuum fields: Nonperturbative fields 7

Vacuum populated by localized gauge fields
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Typical 4D separation R ~ 1 fm

Fraction of 4D space occupied by fields:

EMEMEY GG, m*p*IR* ~ 0.1
. 1672'2 i [In this estimate:
Strong fields: [ d*x GG, =~ o ~ 20 large action > 1 g atscale jt = p ]
vol.field
g - g
Topologically charged: o2 J d*x G,G, =% = J d*x GG, = %1
vol.field vol.field

topological charge action



Vacuum fields: Interpretation

Vacuum fields observed in cooled lattice QCD configurations are
fluctuations with local topological charge =1

QCD instantons: Classical solutions of Yang-Mills equations with topological charge 1
Belavin, Polyakov, Shvarts, Tyupkin 1975, ‘tHooft 1976

Physical interpretation: Tunneling processes in topological landscape of gauge theory

Important for chiral symmetry breaking: Topologically charged gauge fields induce chirality-changing
interactions between fermions, cause chiral symmetry breaking

Program:
Learn about topological structure of gauge theory and tunneling processes = instantons
Construct effective description of QCD vacuum based on instanton fields using semiclassical approximation
Explain/describe dynamics of chiral symmetry breaking

Compute hadronic correlation functions and extract hadron structure



Topological structure: Gauge fields

Space of gauge potentials has topological structure

gauge tf
Ax) — U_I(X)Al-(X) Ux) + ig” U \(x) 0;U(X) Gauge transformation
Here: A = 0 gauge, fixed time =
Ux): R’ - SUQ) c SU®R) Mapping with topological characteristics

U— 1for x| > o

Winding number N§S (Chern-Simons number): How many times U covers SU(2) group
while going over R~ space

Af(X) l

Topological sectors labeled by N ¢ —1 0 +1 | +2

Quantum-mechanical motion of gauge fields extends over all topological sectors



Topological structure: Tunneling 10

-1 0 +1 +2

Energy of gauge field configurations is periodic function in N

For every configuration A; with energy E[A,], there are gauge-equivalent configurations
with the same energy in all the N¢ sectors

Minima E[A;] = O periodic in N, separated by finite barriers

What is the ground state?

Analog: QM particle in periodic 1D potential

Ground state: Particle not localized in one minimum, but in periodic state involving
coherent superposition of all minima

Tunneling: QM transitions between configurations localized in different minima



Topological structure: Ground state 11

4

t QCD ground state = coherent superposition
of gauge fields in all topological sectors

T :

GE’ ! Functional integral: Trajectories involve

= ; tunneling between topological sectors
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Elementary tunneling process AN ¢ = %+ 1

Described by classical trajectory (semiclassical approximation): Instanton
UNy==%1)
>

A (X, 7): A (X, T =—00) = A'(X) A'(x) A’(x)

A (X, 7=+ 00) = A"(x)



Topological structure: Instanton 12
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e.g.
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g ~
[d4x G v,insti(x) G/,w,insti(x) =1

Explicit form of instanton gauge potential
in covariant gauge”

Localized field. Profile function f depends on gauge

Solution of Yang-Mills equation

Field is (anti-) self-dual

Topological charge =1 (= AN in tunneling process)

*Position of center arbitrary, field can be shifted: x — x — z, z = center coordinate



Topological structure: Summary 13

Euclidean time

Strong localized fields in QCD vacuum = tunneling events

Semiclassical approximation: Describe vacuum fields as superposition of instantons and antiinstantons



