Nonperturbative methods in QCD
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How do hadrons emerge from QCD?
How to compute hadron spectra and structure from QCD?

Here: Analytic methods of nonperturbative QCD

Correlation functions: QCD <> hadron spectrum
Vacuum structure: Condensates, symmetry breaking

Computational methods: Operator product expansion, semiclassical methods
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Why interesting

Understand “how QCD works” in nonperturbative regime

Analytic methods are synergistic with lattice QCD:
Explain lattice results, use input from lattice simulations

Analytic methods are very efficient: Calculations simple, high ratio output/input

Link up with current research: Semiclassical methods, instantons

Connections with condensed matter physics:
Complex ground state, study “small” excitations above ground state

Connections with data science: Extraction of information on hadrons from
QCD correlation functions has characteristics of inverse problem



Plan

Elements
QCD fields

Composite operators

Correlation functions
Basic properties
Spectral representation

QCD <« hadron properties

Dynamics
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Method I: Vacuum condensates

Operator product expansion
P P P Shifman, Vainshtein,
Zakharov 1979

Vacuum condensates

QCD <« hadron matching (“QCD sum rules”)

Applications to heavy and light mesons

Limitations of method

Method II: Vacuum fields

Vacuum fields in “cooled” lattice QCD

Topological landscape and tunneling

Shuryak 1982;
Instanton ensemble Diakonov, Petrov 1984

Chiral symmetry breaking
Meson and baryon correlation functions

Current developments



This lecture

Focus on concepts - what they mean, how they are connected and applied
This will include some mathematics, but don’t be afraid...

Skip most calculations but explain basic steps

Go over material at uniform level with aim to understand “what it is about”.
There are many more aspects, but they can be explored later

Please ask questions and give feedback at any time!
There will be summaries after each topic - good time for questions.

Notice: References to literature still missing or incomplete



Elements: Fields and gauge symmetry 5

A, (x) = A/ff(x) %a gauge potential
G,x)=0A, - GUAM +g[A,,A]
= Ga (x) —  gauge field

w(x), y(x) matter fields

y(x) = U p(x)

A, — UAU —ig~'U,U"
l

GW — UGWU

Gl - 0Gh, 0% =t (42U UL U]

%

Degrees of freedom = fields, functions of space-time

SU(N,) gauge group, N, = 3 (“color”)

Matter fields in fundamental representation,
gauge fields as matrices in fundamental
or vectors in adjoint rep

Use compact notation: Spinor/flavor/color

Gauge transformations
U(x) rotation in color, space-time dependent
A transforms non-covariantly, G covariantly

Dynamics invariant under gauge transformation

Degrees of freedom = orbits under gauge transformations



Elements: Composite operators 6

) Ny(x) = Jpx) Physical quantities carried by fields:
Gauge-invariant composite operators, color-singlet

= y* y#¥°>  vector, axial vector | |
Operators characterized by spin,
1, iy scalar, pseudoscalar discrete quantum numbers C, B, T

o'V tensor
Quark flavor combinations:
i..uxd..d isoscalar/isovector
i..d,d..u charged

diagrammatic Here: Bilinear operators,
representation “meson” quantum numbers

Other quark operators

Multilinear operators: wl ‘wyly, l/_fr'%al// l/_fr%al//

Baryon operators wwy, wyy — later



Elements: Composite operators

Gluon operators

tr[G* ()G, ()] = GG, (x) G*(x)G,,,(x) scalar

GH (X)GZU(X) pseudoscalar GZU(X) = %6’“1/’06(;'06()6) dual field strength

Higher-dimension gluon operators
fPUGY LGP (GY,  dim6 et

Gluon operators with derivatives  G"*D,,...G,;  etc.

Mixed quark-gluon operators wG*o, etc.

Quark and gluon operators characterized by

Dimension: (mass)N

Spin: Rank and symmetry of Lorentz tensor

Discrete symmetries: C, P, T



Correlation functions: Definition

(O] TJr(x) Jr(y) [ 0)

T Jx) ) x>y
Jr @) Y0 >

lllustration of concept,
not Feynman diagram

Correlation functions: Vacuum expectation value
of products of gauge-invariant operators

Time-ordered product: Analytic properties (later)

Basic physical objects of QCD as gauge theory
— hadrons, observables

Vacuum state | 0): Ground state of QCD.
Complex structure with vacuum fields
(condensates), dynamical scales

Translational invariance:
Function depends only relative coordinate x — y



Correlation functions: Momentum representation

in4X€iQ(x_y) (O] TJ(x) J-(y) | O0) Momentum representation: 4D Fourier (x — y) — ¢
= 2 T (q) Hn(QZ) 4D tensors X scalar functions of q2
n
Specific form depends on I
q q
— - 2 2
..... I1,(g*) functions of single variable g

Example: Vector operator

] ‘d4xeiQ(x_y) (0] T J3(x) Jy(y) |0) Jy(x) = w(x)y*w(x) vector current
e

= g¢*q* — —g" | II,(g?) Current conservation 9,,J7(x) = 0
4 requires q,( . . . W =0



Correlation functions: Connection with hadrons 10

q q q2 <0 4-momentum spacelike, cannot produce hadrons

q2 > () 4-momentum timelike, can produce hadrons

Evaluate correlation function for g2 > 0

i[d4xe GO (0| T J(x) Jo(y) | 0)

Insert complete set of hadronic states

2 A T Use translational invariance to move operators to x,y = 0
h Combine terms from the two time orderings
Im I1(g?) = Z 2r)*6W(g — P,) (0| J(0) | h){h|J(0)]|0) = p(g?) >0  spectral density
h

Correlation function acquires imaginary part from hadronic states

Q mmmemm Q Allowed states depend on operator quantum numbers and q2

Single-hadron or multi-hadron states
hadrons



Correlation functions: Spectral representation 11

Ve —
aaaaaaaaaas s ions
S <+

threshold

[(g?) = [ s Im II(s)

— 2 — 7
e S —q%— €

ImII(s) = p(s) <« hadrons

[1(g?) analytic function of g*

No singularities at g* < 0

Singularities (poles, cuts) at real q2 > 0

Dispersion relation

Correlation function expressed as integral
over imaginary part at q > threshold

Imaginary part = spectral density from hadronic states:
Spectral representation

Representation valid at all qz: Spacelike, timelike, even complex

Depending on asymptotic behawor of H(qz)

Write dispersion relation for H(q ) — I1(0) etc. (“subtractions”)



Correlation functions: Basic situation

Spacelike

Timelike

T

Here we can compute

T

Here is the information on hadrons

Perturbation theory —g? — o0 Spectral density p = Z €O Jp| i) |
h

Nonperturbative methods:
Short-distance expansion, semiclassics

Lattice QCD

< > In the following we will
: “numbers” on this grap
connected by spectral representation

e

12



Correlation functions: Spectral density 13

Spectral density with single pole

py(s)
= fy 6(s — M
,OV(S) fv (s v)
‘2/
Hv(q2) =
M2 — g*
<+ —> M‘z, q2
M2 To extract meson mass and coupling,
Vv

need to compute correlation function
: 2 2
at spacelike —g~ ~ M,

Realistic: Pole + continuum

Need to include continuum:
Various techniques — following

Inverse problem: Information loss
between spectral density and
spacelike correlation function




Correlation functions: Empirical spectral densities 14

Vector and axial vector currents couple to leptons through electromagnetic and weak interactions

Spectral densities can be measured in lepton annihilation/decay into hadrons
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Fig: Rapp, Wambach 1999

Vector spectral density from
eTe™ annihilation into hadrons

py(s) x o(eTe™ = Y h)

Rho meson pole at ~0.77 GeV

Axial vector spectral density from
7 lepton decay into hadrons

o(t > v+ Z h)
Also pion pole at \/E =M_
Vector and axial vector spectral

functions very different:
Chiral symmetry breaking (later)



Correlation functions: More

Baryon correlation functions

Baryon operators

_ Lofy . p Y .
Br(x) = ™" y; (x)l//j (x)l//k(x) Fljk Totally antisymmetric in color

Blf(x) < y(x) Spin structure determined by spinor matrix I’

(0] TBIf(x)Br(y) 10) Hadronic states: Baryon number 1

3-point functions

Ol TJ~(x) O(2) J, 0 Spectral density more complex,
OITIr(x) 6@ Ir10) describes coupling of hadrons to operator ©®



Summary: Correlation functions

Correlation functions of gauge-invariant operators are the basic physical objects
of quantum field theory <> spectrum, observables

Hadronic states appear in spectral density: Masses, couplings
Spectral representation (dispersion relation) connects timelike and spacelike regions

Extraction of spectral information from computed spacelike correlation functions
IS iInverse problem

Need methods for computation of correlation functions!

16



Dynamics: Computing correlation functions

q . .
I Compute correlation function
---- ] Spacelike distances x — y (x—y)? <0
S lik nta 2<0
< > pacelike momenta ¢g q
A=Y
Dynamics changes with scale
) Asymptotic freedom
g | —gq"| = o0 Perturbative dynamics
—>

2] Nonperturbative dynamics

2
~ Hnonpert
P — need new methods

| —¢g

Pronpert ~ 1 GeV discussed in following

17



Dynamics: Perturbation theory 18

|l
SN
9
_|_
_|_

I’ I’
k—q
) F |
2y — ; _ eynman integral in momentum representation
) l[ (2m)* y [F Gl Gk Q)] Divergent - regularization, renormalization
2 2 d L .
I1(g*) — 11(0) — g d—qu(O) + ... Regularization by subtraction

Alt.: Calculation in coordinate representation i tr [F Gx—yI'G(Hy - x)]
Finite expressions as long as x # y

Vector correlation function I' = y*: ImI1(s) « 6(eTe™ — hadrons).
Perturbative result can be compared directly with inclusive annihilation data — Discussion



Dynamics: Vacuum fields

Vacuum

fields . QCD vacuum not “empty:”
Quantum fluctuations of fields

< > Fluctuations exist independently of external probes:
i i “Vacuum structure”

Propagation of quarks/gluons in correlation functions in presence of “vacuum fluctuations."
Need to take them into account

— Characterize the vacuum fluctuations

— Compute correlation functions in their presence

19



Dynamics: Characterizing vacuum fields

Two main approaches:

l) Characterize quantum averages of the vacuum fields — vacuum condensates
(F*“F,,), (W), higher-dimensional...

Vacuum expectation values of gauge-invariant local operators

ll) Characterize form of fields of certain important vacuum fluctuations
Aﬂ(fluct), F,(fluct)

Physical nature of vacuum fluctuations: Tunneling processes, topological fields

[Lattice QCD: Average over “all” field configurations without distinction.]

20



Dynamics: Vacuum condensates

Vacuum expectation values of gauge-invariant local operators
Ox) = F"F,(x), wy(x), higher-dim

Translational invariance: VEV is independent of position of operator (O(x)) = (0).
Constant “density” filling the vacuum

Operators and VEV depend on renormalization scale u:
Controls which modes of the fields are included in operator and condensate

(O)(w) typically u ~ 1 GeV

Scale dependence governed by renormalization

Not needed in following

included in
operator

group equation for operator (“anomalous dimension”).

21



Dynamics: Gluon condensate 22

(G"G,,) = (G*Y #0 VEV of scalar density of gluon field
(&G2> = (0.36 = 0.02 GeV)4 Empirical value (— following), depends strongly
7 on renormalization scale and definition

atu = 1GeV

Emergence of mass scale in QCD

QCD has no “intrinsic” mass scale! Rl .
\
I, \
Classical action invariant under space-time rescaling (dilatation): ! |
— ]
x> Axt, A — ATIA ' h
’ H H \ ,
\\ ,
N V4
S o - _ "

Mass scale appears only due to quantum fluctuations:
UV cutoff — renormalization — scale in running coupling

Gluon condensate represents “emergent” mass scale:
Scalar density in the vacuum

p(g)

T”ﬂ = EV G*G,, trace of energy momentum tensor (“trace anonaly”)
8



Dynamics: Quark condensate 23

Z 0|y |0) = (0|iuu+dd|0) # 0 Scalar density of quark/antiquark field
f=u,d

~ 2 % (0.22 £ 0.02 GeV)? Empirical value at 4 = 1 GeV

Chiral symmetry breaking in QCD

> >
(x) = 1% y; ) Left/right-handed components » \
VLRA) =5V of quark field (chirality) oft right

In QCD action: L and R components of field decouple (if quark masses m = 0)

S = Sly; ] + Slypl

In ground state (vacuum): L and R components are “locked”

(Olpy|0) = 0|wwr + wryr |0) #0



Dynamics: Quark condensate 24

Dynamics: Sly; 1 + Slygl SUR); x SUR)x g‘fdfF;igd;n; ;Irerll\éc:)rnfr’ﬁistions

identical flavor rotations
5 U(2)L=R of L. and R components

Ground state: (O |y, y% + wry; |0) #0

Spontaneous symmetry breaking: Symmetry of ground states “less” than symmetry of dynamics
Examples in condensed matter physics: Spontaneous magnetization in spin systems
Theory: Order parameter, massless excitations — Goldstone bosons

Symmetry of ground state determines symmetry of emergent effective dynamics:
Hadron spectrum, hadron interactions



Summary: Dynamics

The dynamics governing QCD correlation functions changes with distance/momentum

At momenta | — g*| > ,ur%onpert correlation functions can be computed using perturbation theory

At momenta | — g*| ~ ,ur%onpert the correlation functions functions are essentially modified
by the coupling to vacuum fluctuations of the fields

Vacuum condensate of gluon field represents dynamical mass scale in QCD
arising from quantum fluctuations

Vacuum condensate of quark-antiquark fields connected with spontaneous
breaking of chiral symmetry in QCD

25



Method: Computing correlation functions

Spacelike Timelike

Compute correlation functions at spacelike momenta q2 < 0 in presence of vacuum fields

— Compute down to lower momenta | — ¢%| < 1 GeV?

— Extract information on hadrons

26



Method: Including vacuum fields

|dea: Perform asymptotic expansion of correlation function for large spacelike momenta q2 <0

2) : A4 A6
[I(g“) = [perturbative] + a2 + ) +
1 Language: “Power corrections”

a.
" log(—q?/ Agep)

Perturbative part: Logarithmic q2 dependence

A,: Dimension-4, proportional to dimension-4 vacuum condensates (0| G?*|0), (0| mpry | 0)

Ag: Dimension-6, proportional to dimension-6 vacuum condensates

Expansion in powers of 1/(—q2) = Expansion in dimension of vacuum condensates

Systematic approach. Combines perturbative and nonperturbative dynamics

27



Method: Operator product expansion

Operator product in correlation function expanded in insertions of background field

..... <> _ <:> + <> 4

2 d
TJFJF — Cpert(Q)1 + Z Cd(CI) ( 2)d/2
d=4.6.,... q

perturbative

dimension-4

dimension-6

28



Method: Matching QCD and hadrons

OPE

hadrons

Techniques for spacelike-timelike comparison

0
2 p(s) _
[I(g°) = | ds y spectral representation
thr ST g" 1€
n ('s)
1 d (g2 ‘ R (s) differentiation suppresses high masses
n! \ dg? 1 @ 4 (s — gt in spectral representation (moments)

Alt: Borel transform:

n— oo, — qg/n = M? fixed

exponentially

o0
N J ds e‘S/sz(s) suppresses high masses
t

hr

29



Method: Charmed vector meson J/y 30

Correlation function of charm quark
.......... — . pert vector current 5}/'“6

Charm quark couples only to gluon
2
(01G710) condensate (0| G?|0) at LO

Moment sum rules predict mass
(= binding energy) of charmed vector meson

Input to be determined: Charm
quark mass, gluon condensate

[(GeV] 3 Simplest example of “QCD sum
S rules” method

m X "\x ,X, .
31 e 3.1 Extensions

30 Higher-order perturbative,

| | 113 = higher dimension OPE

n Charmed pseudoscalar meson 7.,
excited states

(VT
U
-
0
s

Fig: Reinders, Rubinstein, Yazaki 1985



Method: p meson

Correlation function of isovector vector current J* = iiy*u — dy*d

Operator product expansion involves gluon and light quark condensates
- - : : _ £2 2
Spectral density parametrized as p meson pole + continuum:  p(s) = fp o(s — m;) + cont.

Spacelike-timelike comparison allows to determine p meson mass and coupling

m, [GeV]
10 Here: Borel transform technique
08 |- L 3 mass in GeV Window of stability
3 _——+—=""_""""no power corr
06
| | | | | 1 ]

—

04 05 06 07 08 09 10
M2

Fig: Reinders, Rubinstein, Yazaki 1985

Borel mass

31



Method: Extensive applications

Light meson masses and couplings

Light baryons

Heavy mesons (quarkonia), including exotics (tetraquarks)

3-point functions: Meson/baryon form factors

Finite temperature and density: Condensates depend on temperature/density

Couplings to external fields, e.g. chromomagnetic fields

[References to be provided]

Parameters

Condensates determined empirically in simple correlation functions,
used in calculations of more complex functions

Condensates estimated using other methods: Semiclassical methods (instantons),
lattice QCD, model assumptions

32



Method: Limitations

Expansion in dimension of condensates poorly convergent in some channels:
Reason understood - instanton effects, discussed later

Extraction of hadron properties from spacelike function limited by “inverse problem” difficulties

33



Summary: Sum rule method

Correlation function computed beyond perturbative regime using operator product expansion:
Systematic parametric expansion

Effect of vacuum fields included through vacuum condensates of increasing dimension

Hadron information extracted by applying functional transforms “filtering” spectral density,
various method

Successful description of vector correlation function and heavy quarkonia

Extensive applications
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