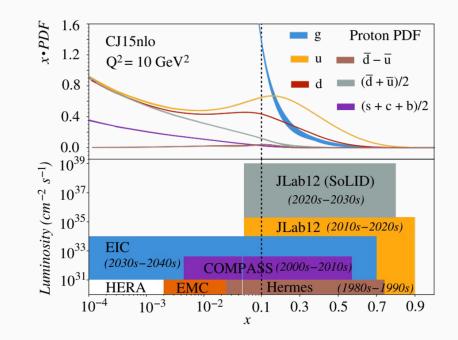
Machine Learning PID SoLID ECal Beam Test

Darren W Upton

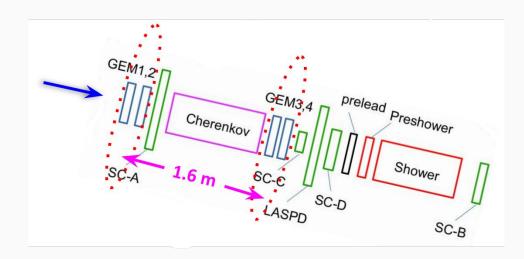
Getting the most out of SoLID

- SoLID is about getting most out of JLab
- How do we get the most out of SoLID?



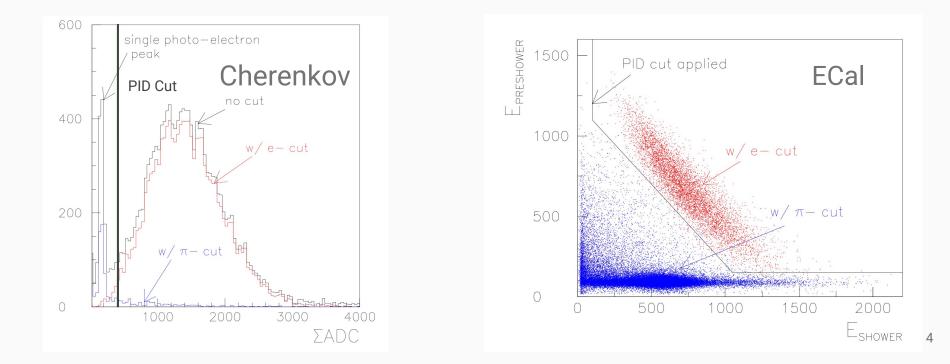
SoLID ECal Beam Test

- Focus on characterizing ECal
- Main Detectors
 - > 3 PreShower-Shower modules
 - > 4 scintillators
 - > Light-gas Cherenkov



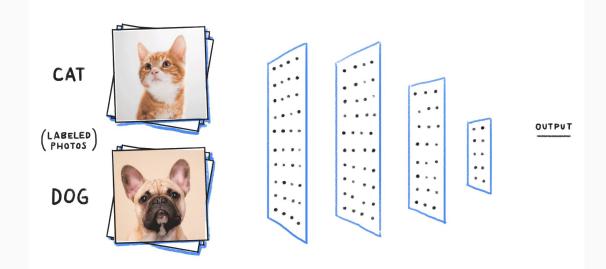
"Classical" Particle IDentification (PID)

Selecting electrons vs charged pions, start with Cherenkov & ECal cuts
 Low dimensional cuts remove "good" events



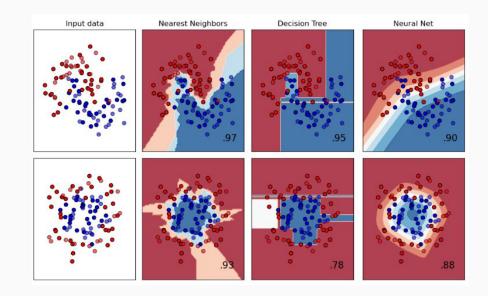
Machine Learning for Classification

- Train on labelled images/data
- Determine label for given set of input
 - Label Cats vs Dogs, etc



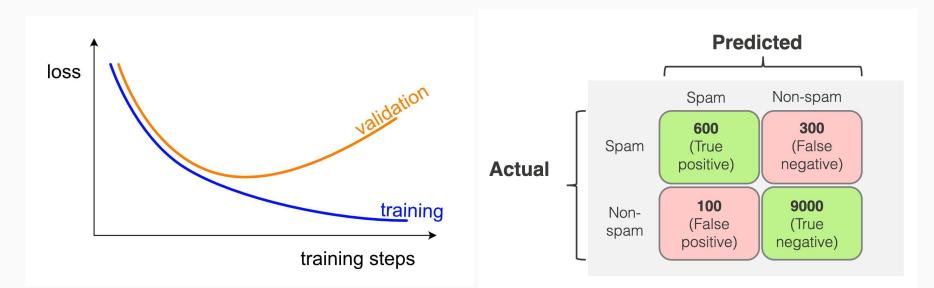
Machine Learning for Classification

- Given some labels for values in input space
- Optimize separation of classes
- Multiple approaches for supervised & unsupervised
 - Clustering, decision tree, NN, etc



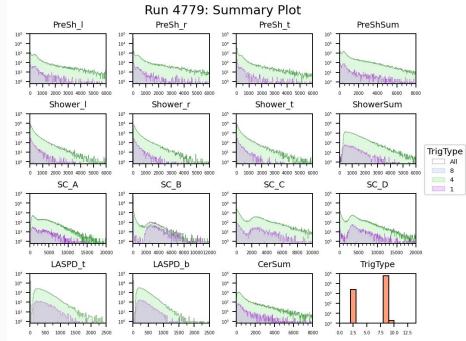
Machine Learning for PID

- Train NN given some labels with embedding in input space
- Study training metrics & model performance



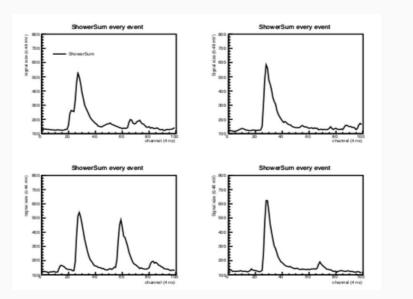
Data Distributions

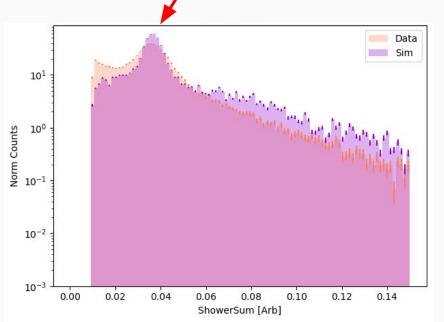
- ADC values for different detectors from different triggers
- Determine Minimum Ionizing Particle (MIP) peaks for sim-data scaling factor



Background Mixing & Smearing

- Match sim-data overall distributions
- Merge concurrent EM background into sim events
 - ➢ Rate 3:1 bkg:sim for 10 uA
- Smear sim MIP peaks to match data

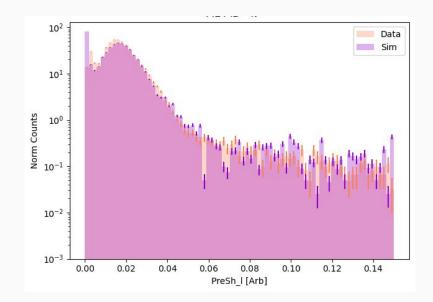


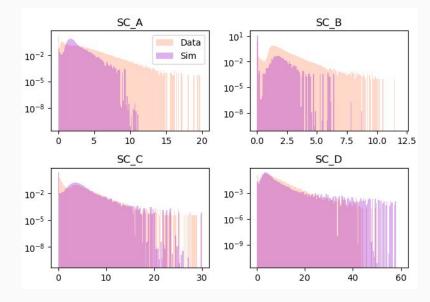


Narrow MIP Peak

Data-Sim Comparison

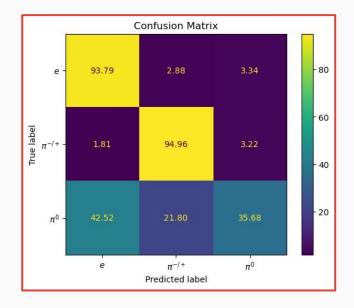
- MIP peak aligned & scaled for ECal modules
- More work needed for some scintillators

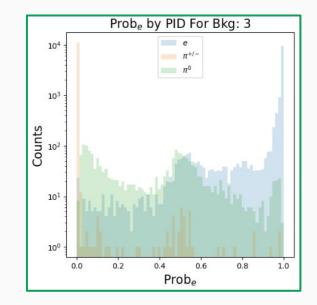




ML Model - Output

- Train model for 10 uA data & check performance for e^{-} , $\pi^{+/-}$, π^{0}
- Confusion matrix shows good $e^- vs \pi^{+/-}$ but poor $e^- vs \pi^0$
- Reduce high-dimensional input into 1D probability distribution





Figures By: Mohhamed Rafi

$\pi^{+/\text{-}}$ PID - Shower Modules

- Charged pion classification
- Reasonable match between data & sim in Shower
- More tuning needed for shoulder before MIP

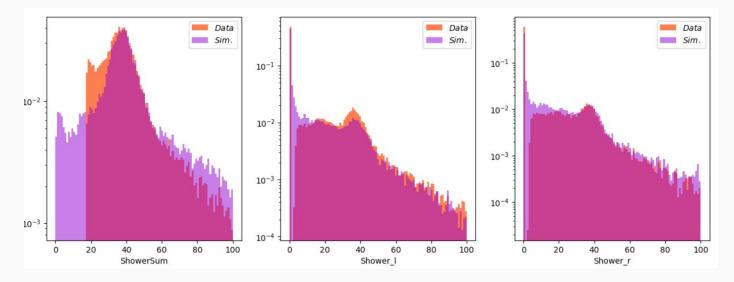
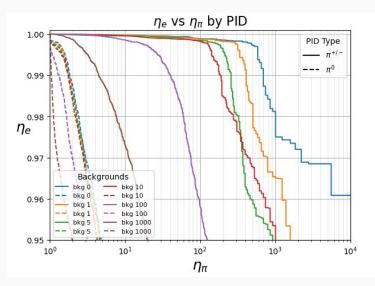


Figure By: Mohhamed Rafi

Impact of Background Merge Factor

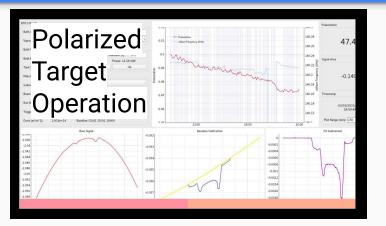
- Increasing background:signal decreases performance
- Map ratio onto beam current then compare with classical PID

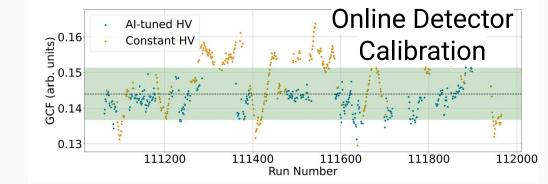
Bkg Sampling Ratio	Electron Efficiency	π [±] Rejection
0	0.9674	473.2436
1	0.9499	439.7209
3	0.9675	370.5415
5	0.9623	291.6676
10	0.9355	309.3121
13	0.9222	300.9621
100	0.9331	102.3948

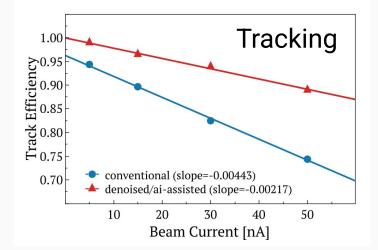


Figures By: Mohhamed Rafi

Other Applications for ML

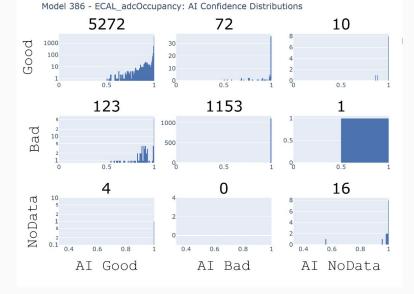




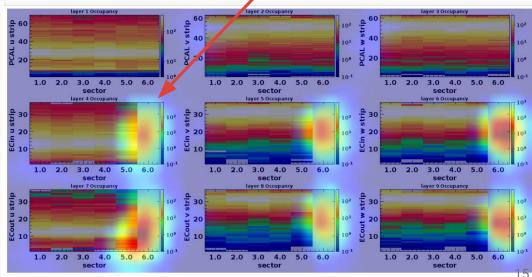


Supervised ML Classification via Hydra

- Train image-classification NN on monitoring plots
- Augment failure examples with pseudo-data

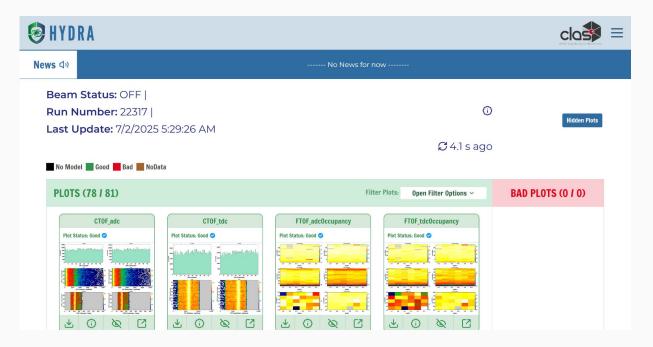


Model looks at images and finds problems



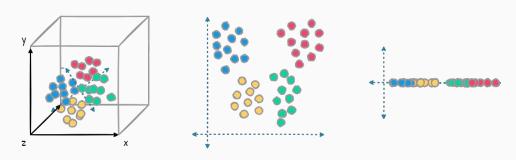
Supervised ML Classification via Hydra

- Same general principle as ML for PID
- Interface operational for all four experimental halls
- Online models for CLAS12 and GlueX



What's the Point of ML?

- Leveraging correlations in high-dimensional data
 ML PID boils complicated cuts into 1D probability cuts
- Data Science / ML methods forces careful understanding of data
 Careful matching of sim-data needed for ML PID
- Developing ML-based tools provides training ground for students
 - Taught detector physics, analysis methods, etc to me + 4 students



Dimensionality Reduction

Questions/Comments

ML Model - Basics

Small NN

Trigger Cuts

Train:Test - 60865:26085

```
Dense(128, activation="relu"), BatchNormalization(), Dropout(0.15),
Dense(64, activation="relu"), BatchNormalization(), Dropout(0.15),
Dense(32, activation="relu"), BatchNormalization(), Dropout(0.15),
Dense(16, activation="relu"), BatchNormalization(), Dropout(0.15),
Dense(8, activation="relu"), BatchNormalization(), Dropout(0.15),
Dense(8, activation="relu"), BatchNormalization(), Dropout(0.15),
Dense(len(np.unique(y)), activation="softmax")
```

#Number of background events per data event n_bkg = 0#1#10

Scint_MIPs = [1.65, 3.5, 3.5, 1.65] # A, D, C, B

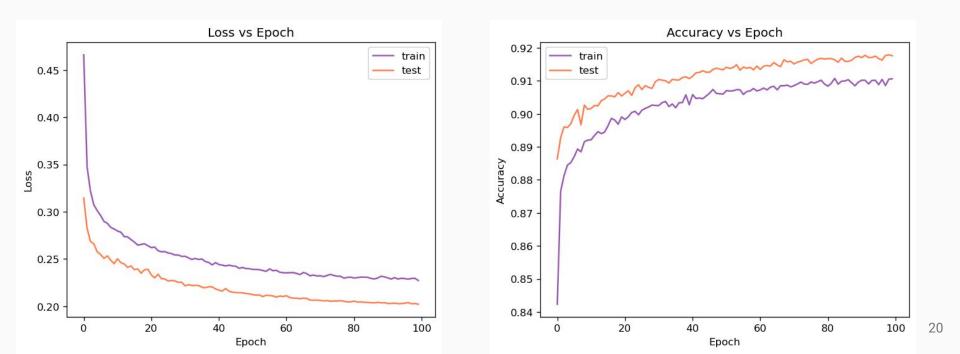
& (sim_df["ShowerSum"]>.5)

#data_np = sim_cher[keeps].to_numpy() #Cher Channels
data_np = (sim_df[(keeps & trig_keeps & outlier_cuts)]).to_numpy()
#bkg_np = ((raw_bkg_df.sample(n=n_bkg*len(data_np), random_state=42, repla
#cher_np = Cher_df.to_numpy()

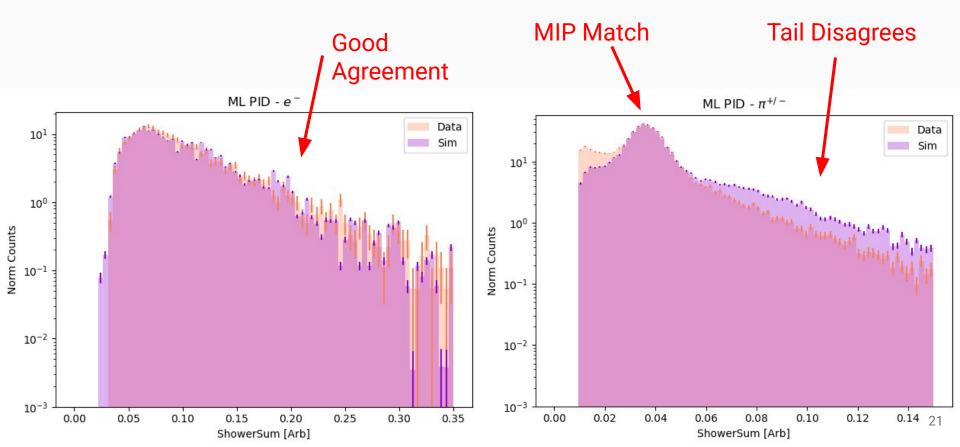
X = data_np[:, [16,17,18,19, 20,21,22,23, 31,28]]#, 25,34,31,28]]#[0, 16,1

ML Model - Training

- Provides information on training performance
- Offset is just normalization effect



ML PID - Shower Sum



Ongoing Questions

- 1. Data-Sim Scaling: Aligning data-sim distributions
- 2. **ECal Resolution:** What resolution/smearing effects should be considered? We use 35% for the PreShower and 10% for the Shower.
- 3. **Sim Rate**: Are the "# rate" values accurate? This is critical for realistic comparison where we weight the histograms by rate.
- 4. **Data Runs**: Which beam currents can we use