

SoLID DAQ preRD and plans

SoLID collaboration meeting July 7th 2025

Alexandre Camsonne

- Outline
- Capital
- Testing
- GEM readout
- Beam Test preparation
- HKS

Conclusion

Capital equipement DAQ

Requested

ltem	cost/item	number	total	
FADC 250	6000	104	624000	
Gigabit serial connector s			40000	
Cables	100	1664	166400	
VETROC	4000	30	120000	
TD	3000	16	48000	
VTP	10000	31	310000	
SSP	5000	4	20000	
VTP	8000	1	13000	
TS	4000	1	4000	
TID	3000	31	93000	
SD	2500	32	80000	
VXS crate	15000	32	480000	
VME CPU	7000	32	224000	
		Total	2217400	

Updated

ltem	cost/item	number	total	
FADC 250	6127	104	637208	
Gigabit serial connector s	40000	1	40000	
Cables	100	1664	166400	
VETROC	4000	30	120000	
TD	3000	16	48000	
VTP	12500	31	387500	
SSP	5000	4	20000	
VTP	12500	1	12500	
TS	4000	1	4000	
TID	3000	31	93000	
SD	2500	32	80000	
VXS crate	19000	32	608000	
VME CPU	9500	32	304000	
		Total	2520608	

Received

Item	cost/item	number	total
FADC 250	6127	104	637208
Gigabit serial connector s	40000	1	40000
Cables	100	1664	120000
VETROC	4000	30	120000
TD	3000	16	48000
VTP	12500	31	387500
SSP	5000	4	20000
VTP	12500	1	12500
TS	4000	1	4000
TID	3000	31	93000
SD	2500	32	80000
VXS crate	19000	32	608000
VME CPU	9500	32	304000
		Total	2520608

Plan to postpone cables to order computer and network switch to complete ESB testing of deadtime and streaming Buy new XVB603 CPU for VME320 readout

Remaining tests for SoLID DAQ

- Achieve 100 KHz trigger rate for SIDIS
- Measure asymmetries at ppm level with full system for PVDIS
- Achieve 150 ps with TOF scintillator
- Achieve 25 ps timing resolution with MRPC
- Show full tracking efficiency above 85% level in full background
- Gas Cerenkov efficiency

Future SoLID preRD

- Highest priority : GEM chip
 - 1) develop VMM optimized for GEM and uRWell with higher gain (500 K\$)
 - 2) Continue testing VMM board signal to noise
 - 3) Evaluate SALSA chip in high background environment
 - 3) Find funding to develop dedicated ASIC chip for GEM (\sim 2.5 M\$)
 - Test with uRWell
- Calorimeter and Cerenkov readout
 - FADC ASIC to be placed on detector : only LV and optical fibers going out instead of BNC cables
- High resolution timing
 - AARDVARC test in beam
 - High resolution FADC timing ASICS
 - Timing distribution with CODA
- Measure physics asymmetries (Hall C?)

Testing

• SBS GEn

VTP readout

• APV25

NPS

• High data rate : 2.1 GB/s

•

- Calorimeter trigger
- SBS GEp
 - Calorimeter trigger
 - Data rate : 2.5 to 3 GB/s
 - GEM readout experience
- Moller
 - Compton
 - Counting DAQ
- HKS
 - Trigger with Cerenkov
 - High resolution TOF with MRPC
- Hall C experiments in HMS and SHMS : measure physics asymmetries : VTP in HMS/SHMS
- Future parasitic beam tests
 - FADC + VTP + VETROC + VMM in on crate for testing : PVDIS one crate setup available with calorimeter and Cerenkov trigger
- Acquired SAMPIC 64 channels sampler for MRPC
- APV25 available after GEp5
- ESB
 - Test V3 FADC
 - VTP trigger
 - GEM readout
 - Deadtime and max trigger rate

Calorimeter trigger

GEM SBS experience

- Experiment supposed to run at 30 uA
- DAQ rate limited to 3 or 4 KHz for high live time (above 85%)
- Data rate limited to 3 GB/s
- Currently running at 20 uA limited by tracking efficiency
- Limited by data rates if going to 30 uA or more but firmware being developed to reduce data rate by 3
- Need to determine if occupancy higher than expected
- Possibly AIML based tracking might be more efficient
- VTP bugs ironed out : about 1 GEM crash every two hours not clear if APV or MPD upsets
- High granularity and faster shaping time would have been helpful
- Unclear if experiments are possible with 1 time sample currently reading 6 time samples

VMM test

- Ordered two test board 1500 \$ x 2
- Build 6 SoLID prototype boards
- Evaluation board : can look at data with detector small subset of channels
 - Issue with external trigger but waiting for new firmware
 - Can check pedestal width
 - Signal to noise with detector with source and cosmics
 - Look at direct readout signals for 12 channels of detector

Noise 6 bit 16mV/fC Sr90

- Amplitude for MIP not change much
- Pedestal width dependent on peaking time

Conclusion VMM testing so far

- 90 ns dead time in 6 bit mode
- Some noise seen in prototype
- Noise larger with decreasing integration time
- MIP a bit low in dynamic range of 6 bit prototype
- Implementing 10 bit to cross compare with evaluation board
- 250 ns for 10 bit mode
- Investigating new VMM with high gains for GEM and uRWell (~500 K\$) Hall B interested, need to reach out to SRS community
- Need implement Rad Hard DC DC converter and lpGBT radiation hard readout

Salsa

- Collaboration of Irfu CEA Saclay and U. of Sao Paulo.
- SALSA
- 64-Ch, updated design from SAMPA V5, migrating to 65 nm CMOS.
- Peaking time: 50 500 ns
- Inputs: Cin optimized for 200 pF; Rates: 25 kHz/Ch; Dual polarity.
- ADC: 12 bits, 10 50 MSPS.
- Extensive data processing capabilities.
- Triggerless and triggered operation.
- Power: 15 mW/Ch
- Gbps links.
- I2C configuration.
- Evaluation board available this year Might want a dedicated SoLID version to match tracker low gain operation and handle high rates at input
- Can bypass analog part but need to develop analog front end
- Data links somewhat limited
- Might want a dedicated version of SALSA

New potential dedicated ASIC

- High luminosity running need to run
- Pile-up and deadtime can be significant
- Dedicated chip
 - Optmized gain and dynamic range
 - Optimize shaping time for high rate operation : from 50 ns to 25 ns or better
 - Zero dead time
 - High speed links to allow streaming

CA: charge amplifier

- optimized for 50-200pF
- programmable gain 25fC to 250fC

FS: fast shaper

• programmable 5-20ns

SS: slow shaper

- for discrimination (zero suppression)
- programmable 20-100ns

DS: discriminator

- trimmable per channel
- external trigger option

WS: waveform sampler

- 128 sampling cells (127 effective)
- continuous sampling until trigger
- 300MS/s \rightarrow ~ 400ns waveform
- programmable pre-post trigger samples

LC: local control logic

internal or external trigger

neighbor (sub-threshold) logic

ADCs

- 8 operating at 10-bit 100MS/s
- waveform conversion time ~ 2.5μs

Data

- channel, trigger, 127 samples = 1,280 bits per waveform
- up to 8 waveforms with sub-threshold neighbors = 10,240 bits
- up to 8 SLVS outputs operating in DDR at ~ 500MS/s
- conversion/readout time (dead time) ~ 2.5μs per event
- maximum event rate ~ 330kHz
- maximum data rate ~ 4Gb/s

Architecture

- event-driven analog/digital with acquisition/readout
- SEU tolerant register and logic
- DSP-ready

Power, Size, Technology, Schedule

- power consumption below 3mW/channel
- anticipated die size ~ 6x8 mm²
- technology TSMC 65nm 1.2V
- development time ~ 24 months (1st proto in 12 months)

Design

- charge amplifier, shapers and samplers based on verified architectures
- ADCs from collaborative effort
- first prototype design time
 - ~ 12-13 months plus ADCs
 - ADC can be parallel effort
- second prototype design time
 - ~ 4-5 months

Key Features

- power-efficient analog zero-suppression
- efficient data generation and transfer
- highly flexible, highly programmable

Acquisition Example

APV25 new MPD

- Upgrade MPD from 100 MBit to 10 GBit ethernet
- Should give max rate from APV25
- Need to improve DAQ stability
 - Not clear if
 - APV single upsets
 - MPD upsets
 - Others (VTP)

GEM new simulation work

- Estimate rates and occupancies with new shaping and sampling electronics
- Optimize segmentation of chambers to avoid
- Explore pads readout chamber to complement high rate tracking

Beam test preparation

- 1 to 2 VXS crate
- 1 crate VTP + up to 16 FADCs or VETROCs
- 1 crate VTP + MPDs for GEMs
- Digital calorimeter cluster and Cerenkov trigger
- Max 5 KHz with GEM
- 100 to 200 KHz should reachable with FADC and VETROC only
- 32 channels of SAMPIC
- 8 channels of ASOC and 8 channels of AARDVARC

HKS experiment

- Run same time as Moller
- 3 High resolution magnetic spectrometers
- Would benefit from high resolution timing for PID
- Trying to put MRPC planes in both arms
- Test FADC trigger logic
- Might require EIC timing system to reach the 5 ps electronics required resolution

Schematic Layout of The Hypernuclear Spectrometer System

HYPER NUCLEAR – LAYOUT (TOP VIEW)

HYPER NUCLEAR – LAYOUT (ISO-VIEW)

HYPER NUCLEAR – CABLE ROUTING

HKS

HES

CABLE TRAY LAYOUT FROM SUPER HMS(YELLOW)

Can program VTP for coincidences between scintillators If use VETROC instead of V1190 could add Drift Chamber to trigger

Conclusion

- Most Capital equipment on hand
- GEM readout
 - VMM with higher gain
 - Funding for new GEM chip
 - Upgraded AVP25 option
- Different setup using capital equipment
 - Moller
 - MAPS readout with VTP
 - Compton
 - Counting DAQ for Q2
 - ESB
 - Deadtime studies
 - GEM VMM readout
 - HKS
 - VTP trigger
 - MRPC