Luminosity analysis

Avnish Singh Supervisor: Prof. Tanja Horn

Luminosity runs

Luminosity Run List (Sep 30, 2023 – Oct 01,2023)

Target	RunNo	ps4	Pre-scale	Current (µA)	Duration (min)	Events	h3/4 rate (kHz)	GRUNC_x5
1.112	1514	0	1	5	10	1023966	2.429	HMS 12.
	1515	2	3	10	10	912408	4.966	
LH2	1516	3	5	15	10	751598	7.137	SHMS 36
	1517	4	9	25	15	811950	11.509	■ NPS 20.5
	1518	7	65	40	15	521346	48.681	D a 1 1111
LD2	1519	6	33	25	10	485796	30.510	Calo HV
	1520	6	33	18	10	289841	22.035	Sweep m
	1521	5	17	10	10	328346	12.158	EDTM 1
	1522	4	9	5	10	345025	6.152	
Carbon	1523	4	9	35	10	180135	4.044	
	1524	3	5	35	10	156607	3.893	
	1525	3	5	40	10	187356	4.563	
	1526	3	5	25	10	144809	2.831	
	1528	2	3	15	10	153366	1.513	
	1530	0	1	5	15	190627	0.560	(and the

Luminosity Run List (May 19, 2024)

Target	RunNo	ps4	Pre-scale	Current (µA)	Duration (min)	Events
	7003	0	1	40	6	212049
	7004	0	1	30	8	207087
Carbon	7005	0	1	20	12	208227
	7006	0	1	10	22	217021
	7007	0	1	5	32	203780

Luminosity Run List (May 13, 2024)

KinC_x60_3
 EDTM 40Hz
 SHMS 36.443°
 HMS 16.477°

2.493°	Target	RunNo	ps4		Current (µA)	Duration (min)	Events	□ KinC_x5
2.175		6845	0	Ι	5	10	130446	EDTM 4
36.88°		6846	0	1	20	10	484576	
.58°	Carbon	6847	0	I	15	10	323955	SHMS 30
		6848	0	1	10	10	210257	
V . CC		6849	0	1	3	14	83328	0.1
V off		6850	0	1	5	10	170876	Carbon run:
magnet of		6851	0	1	20	11	558105	□ HMS 21.
inaginet of	LH2	6852	0	1	15	10	440747	
100Hz		6853	0	1	10	10	315654	
		6854	0	1	3	10	118057	LH2 runs:

Tables taken from Yaopeng.

Livetime Definitions (current cut: peak+-1uA)

1. Total EDTM Livetime

Definition:

 $\label{eq:total_$

EDTM triggers accepted:

T_hms_hEDTM_tdcTimeRaw[0] != 0

- Total EDTM scalers: Accumulated in TSH tree
- Note:

No current cut applied

3. Computer Livetime All (TDC)

Definition:

(

$$ext{Computer LT (TDC)} = rac{ ext{Accepted hTRIG4 (TDC)}}{ ext{Total hTRIG4 (scalers)}} imes ext{beam_on_percent}$$

Accepted hTRIG4:

T_hms_hTRIG4_tdcTimeRaw[0] != 0

beam_on_percent:

 $\frac{\rm trig_accp_total_current_cut}{\rm trig_accp_no_cut} \quad ({\rm from\ scalers})$

2. Computer Livetime All (TSH)

Definition:

 $Computer LT (TSH) = \frac{Accepted triggers (scalers)}{Total hTRIG4 triggers (scalers)}$

- Accepted triggers:
 H.hL1ACCP.scaler
- Condition:
 Current cut applied

4. Computer Livetime Physics (TDC)

Definition:

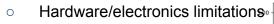
 $Physics LT (TDC) = \frac{Accepted physics triggers (TDC)}{scaler_hTRIG4_total - scaler_edtm_total} \times beam_on_percent$

Accepted physics triggers:

T_hms_hTRIG4_tdcTimeRaw[0] != 0 and T_hms_hEDTM_tdcTimeRaw[0] == 0

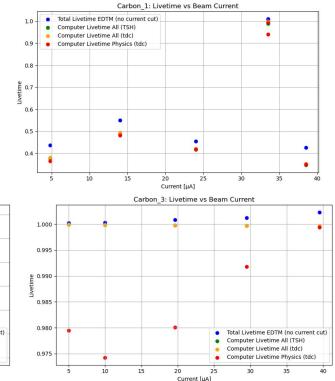
Carbon runs

EDTM Livetime > 1 in some runs \rightarrow indicates logical inconsistency:


• More accepted than generated EDTM pulses — not physically possible.

0.98


0.96


E 0.94

• Potential issues:

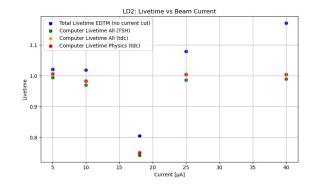
- DAQ prescaling errors?
- Carbon 1: Most extreme deviation

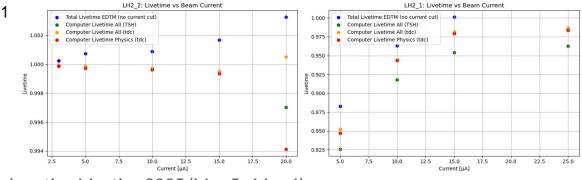
NPS Collaboration Meeting 2025 (May 5 - May 6)

Carbon 2: Livetime vs Beam Current

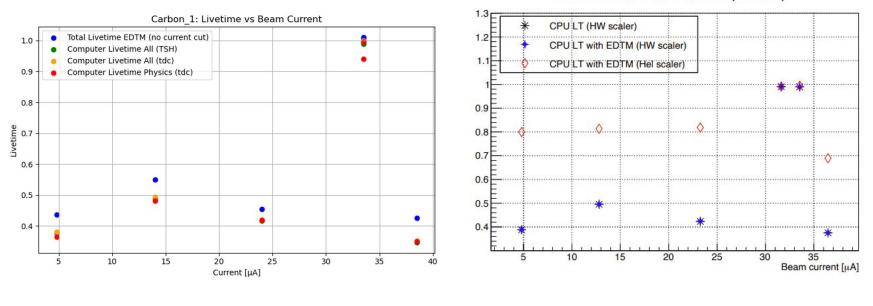
.

LH2 and LD2 runs

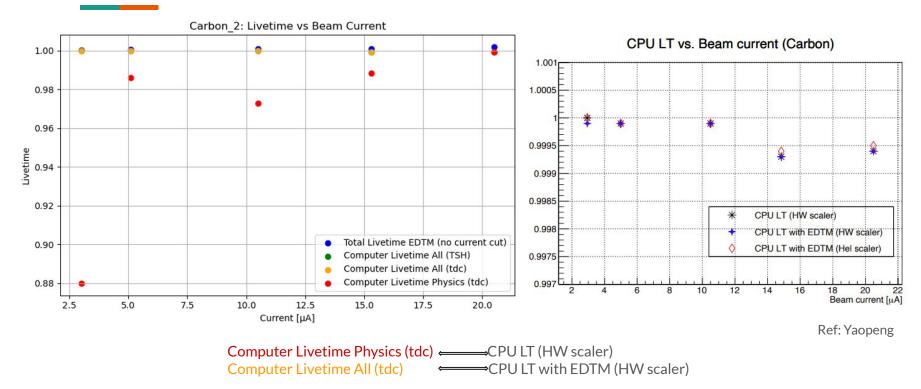

LH1_1: Livetime increases with current contrary to expectations

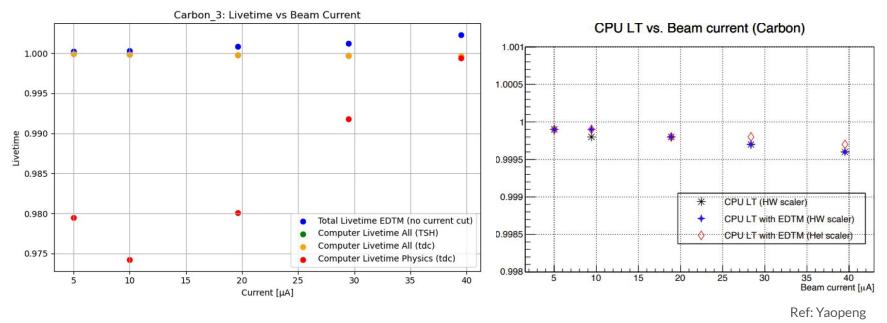

LH2_2:

- EDTM > 1
- Most other livetimes approach 1 as current $\rightarrow 0$


LD2:

- EDTM > 1; other livetimes also exceed 1
- Abrupt dip around ~18 μA
- Possibly due to sudden rate spike; extrapolates to ~1 at zero current


Comparison: Carbon 1


CPU LT vs. Beam current (Carbon)

Computer Livetime Physics (tdc) ← CPU LT (HW scaler); Computer Livetime All (tdc) ← CPU LT with EDTM (HW scaler) Ref: Yaopeng

Comparison: Carbon 2

Comparison: Carbon 3

Computer Livetime Physics (tdc) \longrightarrow CPU LT (HW scaler) Computer Livetime All (tdc) \longleftarrow CPU LT with EDTM (HW scaler) NPS Collaboration Meeting 2025 (May 5 - May 6)

Investigation into Low Livetime in Luminosity Scans

run	beam_on_percent_edtm	beam_on_percent_trig_accp	TLT_livetime_edtm	CLTA_livetime_tsh	CLTA_livetime_tdc	CLTP_livetime_tdc
1524	0.282147	0.830967	1.006677	0.990288	0.999073	0.940895
1525	0.831179	0.850799	0.426136	0.34609	0.351903	0.349728
1526	0.942738	0.96411	0.455052	0.416527	0.420666	0.418816
1528	0.704111	0.870983	0.549617	0.489407	0.494703	0.481882
1530	0.860732	0.91566	0.436322	0.377493	0.381609	0.364245
6845	0.91214	0.97055	1.000651	0.999891	0.999898	0.986157

DAQ Issues Identified (Log Entry 4190122)

- Runs 1526–1532: npsvme3 failed to communicate with CODA
- CODA required multiple restarts
- Runs 1526–1534: Missing END_OF_RUN entries in logbook
 → Strong indicator that DAQ was not functioning properly

Anomaly in Run 1525

- Run 1525 has low livetime **despite** a valid END_OF_RUN entry
- Green highlight: large difference between
 - beam_on_percent_edtm
 - beam_on_percent_trig_accp
- This discrepancy is unique to Run 1524 onward

- Red = runs with low livetimes
- Green = notable beam-on discrepancy
- $\mathbf{Beam \ On}\ \% = \frac{\text{Accepted Triggers (with current cut)}}{\text{Accepted Triggers (no cut)}}$

Change in ps_factor and Potential Misconfiguration

- ps_factor changed in Run 1524
- <u>Known CODA issue</u>: ps_factor changes may not save correctly
- Likely caused problematic DAQ configuration
- May explain both beam-on mismatch and DAQ failures

Carbon	1523	4	9	35	10	180135	4.044
	1524	3	5	35	10	156607	3.893
	1525	3	5	40	10	187356	4.563
	1526	3	5	25	10	144809	2.831
	1528	2	3	15	10	153366	1.513
	1530	0	1	5	15	190627	0.560

Summary of livetimes

- ps_factor change in Run 1524 correlates with beam-on tracking anomaly
- Runs 1525–1530 show unusually low livetimes
- Runs 1526–1534 lack proper END_OF_RUN entries
- CODA likely failed to read or record data correctly during this period
- Decide on the usability of the first luminosity scan.
- Need to decide which livetime to use.

Yield Definitions

Accepted Trigger:

• T_hms_hTRIG4_tdcTimeRaw[0] != 0

Untracked Yield Criteria:

- TRIG4 fired
- H_cer_npeSum[0] > 2
- |H_cal_etotnorm[0] 1| < 0.4
 → Counted as untracked event

Tracked Yield Criteria (All above + tracking cuts):

- |H_gtr_dp[0]| < 10
- |H_gtr_th[0]| < 0.09, |H_gtr_ph[0]| < 0.055
- H_gtr_ok[0] == 1, H_react_ok[0] == 1
 → Counted as tracked event

Scaler Yield:

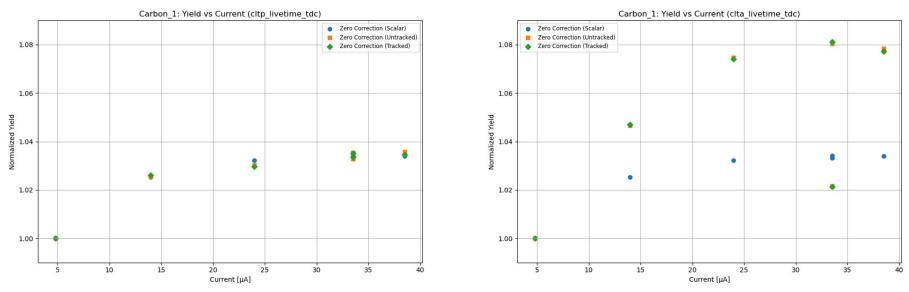
 $\frac{\text{Accumulated } hTRIG4 - \text{Accumulated EDTM}}{\text{Accumulated Charge}}$

Untracked Yield:

 $\frac{\text{Accepted Untracked TRIG4} \times \text{Beam On \%} \times \text{PS Factor}}{\text{Accumulated Charge} \times \text{Livetime}}$

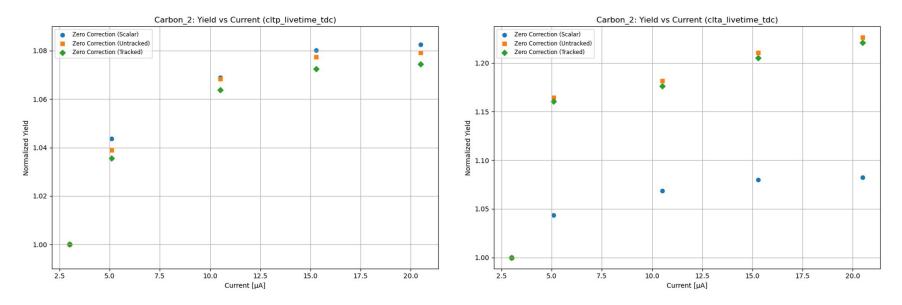
Tracked Yield:

 $\frac{\text{Accepted Tracked TRIG4} \times \text{Beam On }\% \times \text{PS Factor}}{\text{Accumulated Charge} \times \text{Livetime}}$

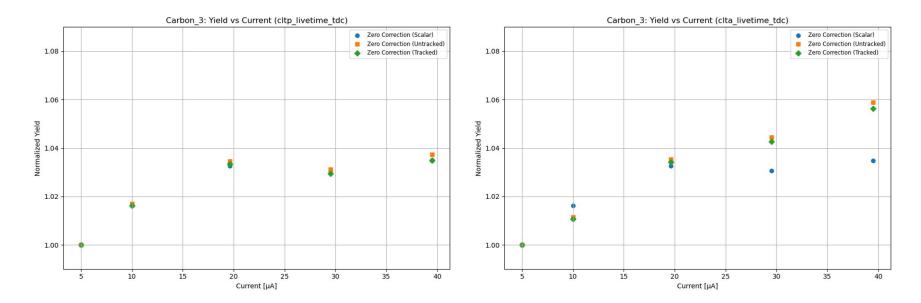

Used to map scaler-based livetime (TSH tree) to event-level triggers (T tree), since there's no direct one-to-one mapping.

 $\label{eq:Beam On \%} \textbf{Beam On \%} = \frac{\text{Accepted Triggers (with current cut)}}{\text{Accepted Triggers (no cut)}}$

Triggers counted from: H.hL1ACCP.scaler


NPS Collaboration Meeting 2025 (May 5 - May 6)

Carbon Yields: Carbon 1


- Tracked and untracked yields, calculated using computer livetime (physics triggers only), match the scaler-based yields trend. This consistency supports Yaopeng's findings.
- However, when using computer livetime (all triggers = physics + EDTM), the tracked and untracked yields show deviations up to ~20% from scaler-based yields.

Carbon Yields: Carbon 2

• Need to decide on the more reliable between the two livetimes.

Carbon Yields: Carbon 3

• Need to decide on the more reliable between the two livetimes.

Flattening the Carbon runs

Observed an *"anti-boiling"* trend — an increase in Carbon's charge-normalized yield with increasing beam current.

Initialize: Load TSH tree to access scaler info from ROOT files.

Select Current Window: Filter events within peak \pm 1.0 μ A (adjustable).

Filter Events: Exclude events outside current window for all scaler sums.

Accumulate Scalers: Use 2 s intervals (via 1 MHz clock) to sum accepted scalers.

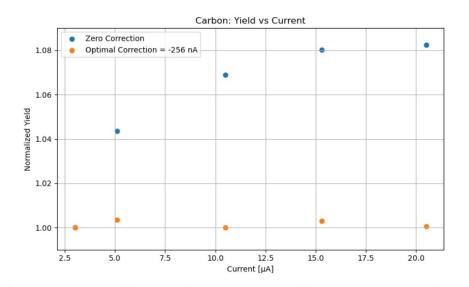
Apply Correction:

- Compute: corrected current = BCM4A current + correction
- Use to calculate corrected total charge.

Optimize Correction:

- Tune correction to minimize deviation from unity in Carbon yields.
- Cost function:
 cost = Σ(normalized_yields, 1)²

Apply to LH2/LD2: Use optimal Carbon correction for final yield normalization.


Correction methods

To correct this effect, I implemented two approaches:

- 1. Global Correction
 - Based on the method used in the KaonLT experiment.
 - Applies a fixed offset to the **BCM4A current** (in Amperes).
 - KaonLT used a global shift of **33 nA**.
- 2. Rate-Dependent Correction
 - Accounts for **Unser monitor noise**, modeled as at least $2 \mu A I \sqrt{Hz}$.
 - Correction applied dynamically based on beam rate.
 - Unit: $A\sqrt{Hz}$ NPS Collaboration Meeting 2025 (May 5 May 6)

Global correction

- Applies a fixed offset (in Amperes) to BCM4A_current, regardless of run conditions: corrected_current = BCM4A_current + correction
- **Optimized corrections** for Carbon run periods:
- Results align with Yaopeng's estimate of ~200 nA.

Run Period	Optimal Correction
Carbon 1 $(1523 - 1530)$	-185 nA
Carbon 2 $(6845 - 6849)$	-256 nA
Carbon 3 (7003 – 7007)	-203 nA

Table: Correction values based on the scaler yields.

Rate dependent method

- Correction varies with **BCM scaler rate**, computed every **2 s interval**.
- Formula: corrected_current = BCM4A_current + correction × √(BCM_rate)
- **Correction unit**: A/√Hz

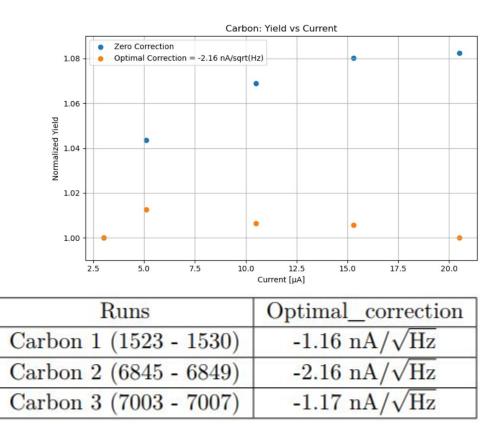


Table: Correction values based on the scaler yields.

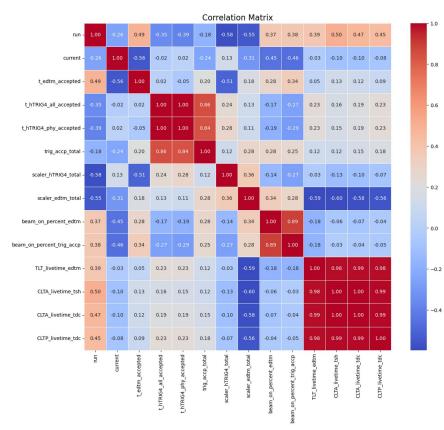
Summary

- Four definitions of livetimes were studied.
- Two definitions called "Computer livetime All (tdc)" and "Computer livetime Physics (tdc)" bear confidence. (refer slide 4)
- Livetimes as calculated by Yaopeng are in disagreement for some runs which ask for further investigation into the detailed implementation of livetimes as compared to this study.
- First luminosity scan might be bugged due to the crashed CODA.
- Scaler, untracked, and tracked normalised yields were calculated and compared using two different livetime definitions as mentioned above.
- A difference in the two yields is shown by the two methods.
- Need to decide on which livetime to use for the analysis.
- Two correction methods for flattening the Carbon runs are checked.

Thank you for listening :D

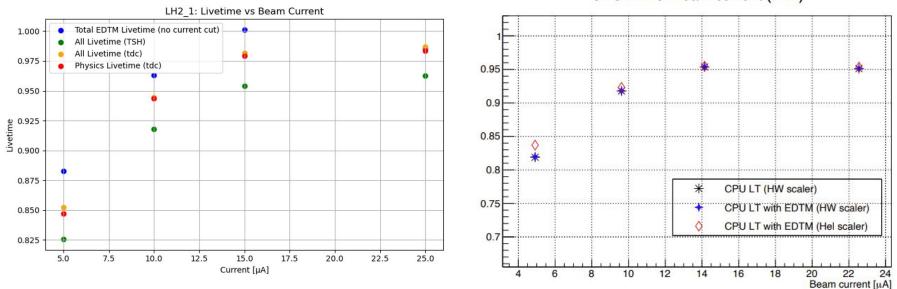
Extras

Livetime definitions

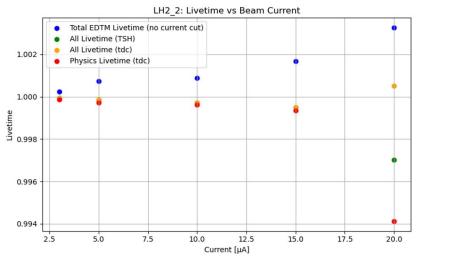

Total EDTM livetime = (EDTM triggers accepted)/(Total EDTM scalers); EDTM triggers accepted: T_hms_hEDTM_tdcTimeRaw[0] != 0; Total EDTM scalers: Total edtm scalers accumulated in TSH tree; No current cut

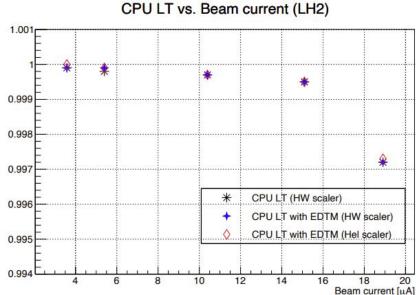
Computer Livetime All (TSH) = (accepted triggers accumulated in scalers)/(total hTRIG4 triggers accumulated in scalers); Current Cut; accepted triggers: H.hL1ACCP.scaler

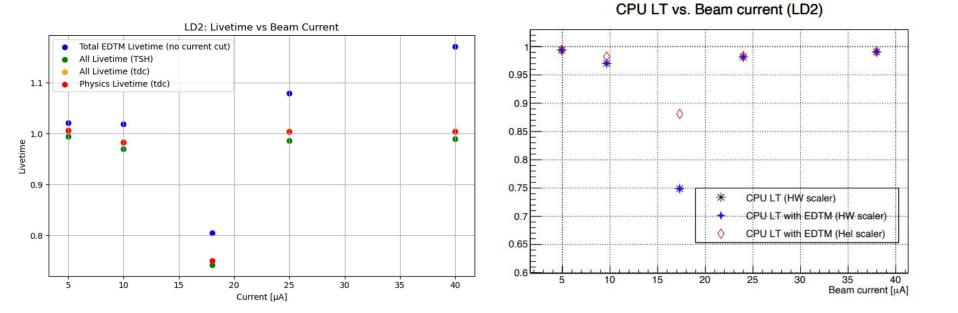
Computer Livetime All (tdc) = ((accepted hTRIG4 triggers from tdcTimeRaw)/(total hTRIG4 triggers accumulated in scalers))*beam_on_percent; accepted hTRIG4: T_hms_hTRIG4_tdcTimeRaw[0] != 0; beam_on_percent = (trig_accp_total_current_cut/trig_accp_no_cut) from scaler


Computer Livetime Physics (tdc) = (accepted physics triggers from tdcRawTime)/(scaler_hTRIG4_total - scaler_edtm_total)*beam_on_percent; accepted physics triggers: T_hms_hTRIG4_tdcTimeRaw[0] !=0 and T_hms_hEDTM_tdcTimeRaw[0] == 0:

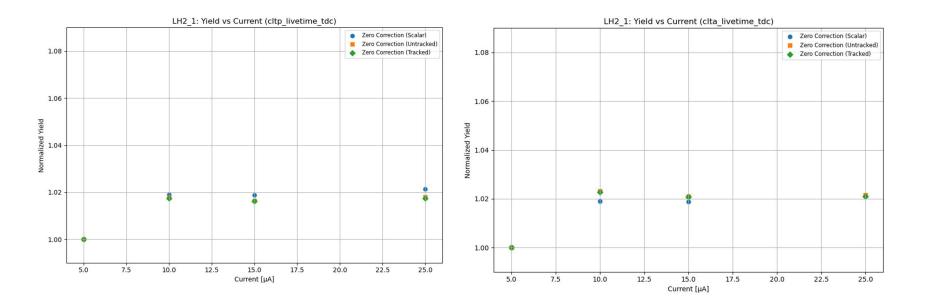
Correlations


No correlation found between the variables.

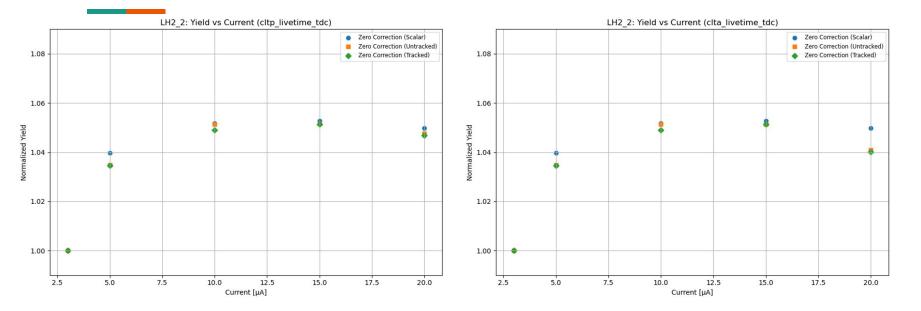

Comparison: LH2_1 livetimes


CPU LT vs. Beam current (LH2)

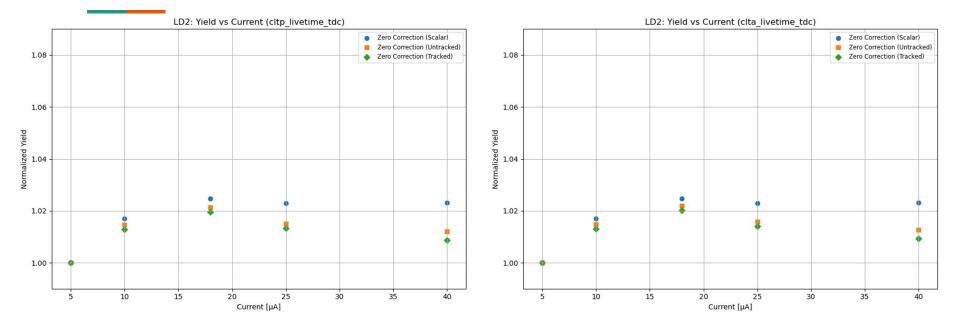
Comparison: LH2_2 livetimes

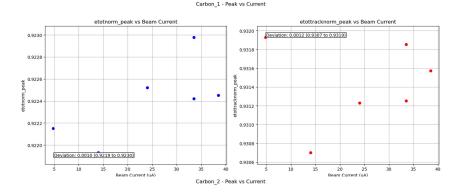


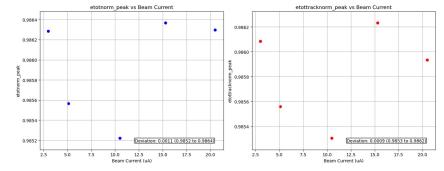
Comparison: LD2 livetimes



27

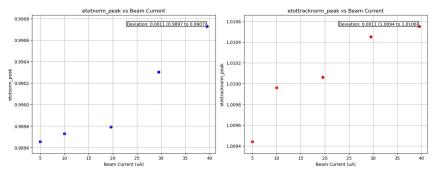

LH2 Yields


LH2 Yields (2nd scan)

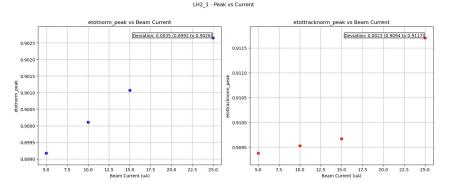


LD2 Yields

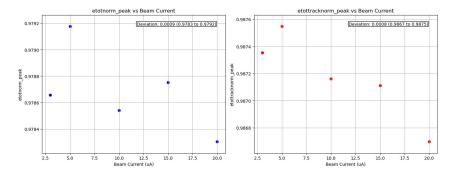
E/P peaks against current (carbon runs)

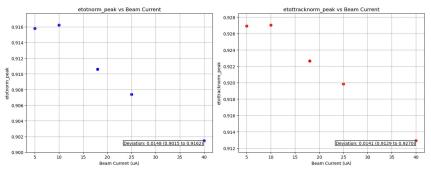

Reasoning:

A positive shift could push more pions above the etotnorm > 0.7 cut, possibly inflating yields.


Carbon runs show a ~0.11% shift in peak position. \rightarrow Envelope estimates indicate negligible impact on yield.

For LD2 and LH2, a more detailed study could help, but currently deemed **non-critical** after further discussion.


Carbon_3 - Peak vs Current


E/P peaks against current (LH2 and LD2 runs)

LD2 - Peak vs Current

