

Luminosity Analysis

Yaopeng Zhang

Collaboration meeting 05/06/2025

Contents:

- 1. Overview of 3 sets of luminosity scan runs
- 2. Yield analysis and troubles with scan 1
- 3. BCM offset issues

4. Boiling effect

Overview

Motivation for the luminosity scan

- > The beam current range for our production runs: $3uA(KinC_x36_6) 40uA(KinC_x60_3a/3b/4a/4b)$
- ➤ Issues:
 - \blacktriangleright Low current: the potential BCM offset error could give the uncertainty about 0.2/3=6.7%;
 - ➢ High current: the boiling effect reduces about 2.5% yield at 25uA (about 4% at 40uA)
- ➤ We have in total 3 sets of luminosity scan runs:
 - 1. KinC_x50_2: Sep 30, 2023 Oct 01,2023
 - 2. KinC_x50_0: May 13, 2024
 - 3. KinC_x60_3: May 19, 2024

	Lumi runs	<i>k</i> [GeV]	<i>k</i> ′ [GeV]	θ [degree]	Q^2 [GeV ²]	x_B	W^2 [GeV ²]
1st	1514-1530	10.539	6.667	12.49	3.326	0.458	4.820
2nd	6845-6849	6.370	2.638	21.05	2.243	0.320	5.641
	6850-6854	6.370	2.638	25.94	3.386	0.483	4.497
3rd	7003-7007	10.539	5.878	16.477	5.088	0.582	4.539

■ 1st luminosity scan runs

Target	RunNo	ps4	Pre-scale	Current (µA)	Duration (min)	Events	h3/4 rate (kHz)	\Box KinC_x50_2
	1514	0	1	5	10	1023966	2.429	□ HMS 12.493°
I U O	1515	2	3	10	10	912408	4.966	_
LN2	1516	3	5	15	10	751598	7.137	□ SHMS 36.88°
	1517	4	9	25	15	811950	11.509	□ NPS 20.58°
	1518	7	65	40	15	521346	48.681	
	1519	6	33	25	10	485796	30.510	Calo HV off
LD2	1520	6	33	18	10	289841	22.035	□ Sweep magnet off
	1521	5	17	10	10	328346	12.158	
	1522	4	9	5	10	345025	6.152	LEDIM 100HZ
	1523	4	9	35	10	180135	4.044	
	1524	3	5	35	10	156607	3.893	
Carbon	1525	3	5	40	10	187356	4.563	
	1526	3	5	25	10	144809	2.831	
	1528	2	3	15	10	153366	1.513	
	1530	0	1	5	15	190627	0.560	

2nd luminosity scan runs

Target	RunNo	ps4	Pre-scale	Current (µA)	Duration (min)	Events
Carbon	6845	0	1	5	10	130446
	6846	0	1	20	10	484576
	6847	0	1	15	10	323955
	6848	0	1	10	10	210257
	6849	0	1	3	14	83328
LH2	6850	0	1	5	10	170876
	6851	0	1	20	11	558105
	6852	0	1	15	10	440747
	6853	0	1	10	10	315654
	6854	0	1	3	10	118057

 \Box KinC_x50_0

3rd luminosity scan runs

Target	RunNo	ps4	Pre-scale	Current (µA)	Duration (min)	Events
Carbon	7003	0	1	40	6	212049
	7004	0	1	30	8	207087
	7005	0	1	20	12	208227
	7006	0	1	10	22	217021
	7007	0	1	5	32	203780

\Box KinC_x60_3
EDTM 40Hz
□ SHMS 36.443°
□HMS 16.477°

<u>finn</u>

Analysis procedure

- > Use 2 μ A cut to calculate the charge for each run
- > Apply the same 2 μ A cut when selecting El-REAL events
- > Calculate the average beam current with the 2 μ A cut

Scaler Yield	Non-tracking Yield	Tracking Yield
scaler_htrig4 – scaler_edtm	# of events × ps-factor	# of events × ps-factor
charge	charge \times LT	charge \times LT \times track_eff
Cuts for scaler counting: Beam current cut	Cuts for event selection: Beam current cut Non-edtm npeSum>6 0.6<etotnorm<1.5< li=""> </etotnorm<1.5<>	Cuts for event selection: ▶ Beam current cut ▶ Non-edtm ▶ npeSum>6 ▶ 0.6<etottracknorm<1.5< li=""> ▶ gtr_dp ≤ 8 </etottracknorm<1.5<>
$LT = \frac{\# \text{ of events } (no)}{\text{scaler_htrig4} - \text{scaler}}$	$ vtx_z \le 4 $ $ vtx_ok \text{ and } gtr_ok $	

 (\mathbf{B})

..........

Analysis procedure

Linear fitting \geq

Second Fitting

7

Carbon Yield vs beam current

- 1st luminosity scan runs \geq
- BCM4A used for charge and current calculation \geq
- BCM4A gain = 9597 \geq
- BCM4A offset = -1839 \geq

- BCM2 used for charge and current calculation
- BCM2 gain = 5707
- BCM2 offset = 249300

Charge normalized El-Real events(Carbon)

8

 \Box KinC_x50_2

Carbon Yield vs beam current

- \succ 2nd luminosity scan runs
- BCM4A used for charge and current calculation
- $\blacktriangleright \text{ BCM4A gain} = 9597$
- $\blacktriangleright \text{ BCM4A offset} = -1839$
- > The anti-boiling effect is much larger for the 2^{nd} luminosity scan runs
- BCM2 used for charge and current calculation
- $\blacktriangleright \quad BCM2 \ gain = 5707$
- $\blacktriangleright \quad BCM2 \text{ offset} = 249300$

 \Box KinC_x50_0

9

Carbon Yield vs beam current

- \succ 3rd luminosity scan runs
- BCM4A used for charge and current calculation
- \blacktriangleright BCM4A gain = 9597

10

 $\blacktriangleright \text{ BCM4A offset} = -1839$

- \Box KinC_x60_3
- BCM2 used for charge and current calculation
- ➢ BCM2 gain = 5707
- \blacktriangleright BCM2 offset = 249300

Possible impact from BCM offset error

> The formula to calculate the BCM4A current:

Charge normalized El-Real events(Carbon)

Offset that cancels the anti-boiling

- \succ 1st luminosity scan runs
- BCM4A used for charge and current calculation
- $\blacktriangleright \quad \text{BCM4A gain} = 9597$
- **BCM4A offset = 103 (BCM calib: -1839)**

- BCM2 used for charge and current calculation
- ➢ BCM2 gain = 5707
- BCM2 offset = 250219 (BCM calib: 249300)

Charge normalized El-Real events(Carbon)

BCM calibration: BCM2:

gain = 5707, offset = 249300

BCM4A: gain = 9597, offset = -1839

Offset that cancels the anti-boiling

- Summary for all the 3 sets of luminosity runs:
 - Equivalent current offset: offset_diff = (offset_new offset_calib) / gain_calib
- > The new BCM offsets go beyond the error bar in Christine's BCM calibration results (about twice of the error bar)
- > The offset_diff for KaonLT is only about 33nA (0.033 μ A)

	Carbon wung		BCN	/ I 4A	BC	M2
	Carbon runs	Current(µA)	offset	offset_diff	offset	offset_diff
Fall 2023	1523-1530	5-40	103	0.20 µA	250219	0.16 μA
May 13, 2024	6845-6849	3-20	588	0.25 μA	250390	0.19 μA
May 19, 2024	7003-7007	5-40	47	0.20 µA	250281	0.17 μA

1st luminosity scan runs

- > The tracking efficiency is very high
- \succ The h3/4 trigger efficiency is also very high
- > The CPU LT is suspiciously low

1st luminosity scan runs

■ 1st luminosity scan runs

Target	RunNo	ps4	Pre-scale	Current (µA)
1 113	1514	0	1	5
	1515	2	3	10
LNZ	1516	3	5	15
	1517	4	9	25
	1518	7	65	40
LD2	1519	6	33	25
	1520	6	33	18
	1521	5	17	10
	1522	4	9	5
	1523	4	9	35
	1524	3	5	35
Carbon	1525	3	5	40
Carbon	1526	3	5	25
	1528	2	3	15
	1530	0	1	5

Among 15 runs, only 5 runs have good scalers:

	runs
good time sync	1518, 1519, 1522, 1523, 1524
unstable Hel scaler	1520, 1525, 1526, 1528, 1530
broken Hel scaler	1525, 1526, 1530

■ 1st luminosity scan runs

Target	RunNo	ps4	Pre-scale	Current (µA)
1 112	1514	0	1	5
	1515	2	3	10
LNZ	1516	3	5	15
	1517	4	9	25
	1518	7	65	40
	1519	6	33	25
LD2	1520	6	33	18
	1521	5	17	10
	1522	4	9	5
	1523	4	9	35
	1524	3	5	35
Carbon	1525	3	5	40
Carbon	1526	3	5	25
	1528	2	3	15
	1530	0	1	5

Among 15 runs, only 5 runs have good scalers:

	runs
good time sync	1518, 1519, 1522, 1523, 1524
unstable Hel scaler	1520, 1525, 1526, 1528, 1530
broken Hel scaler	1525, 1526, 1530

The good runs have high cpu LT:

CPU LT vs. Beam current (Carbon)

■ 1st luminosity scan runs

Target	RunNo	ps4	Pre-scale	Current (µA)
1 110	1514	0	1	5
	1515	2	3	10
LNZ	1516	3	5	15
	1517	4	9	25
	1518	7	65	40
	1519	6	33	25
LD2	1520	6	33	18
	1521	5	17	10
	1522	4	9	5
	1523	4	9	35
	1524	3	5	35
Carbon	1525	3	5	40
Carbon	1526	3	5	25
	1528	2	3	15
	1530	0	1	5

Among 15 runs, only 5 runs have good scalers:

	runs
good time sync	1518, 1519, 1522, 1523, 1524
unstable Hel scaler	1520, 1525, 1526, 1528, 1530
broken Hel scaler	1525, 1526, 1530

The good runs have high cpu LT:

CPU LT vs. Beam current (LD2)

2nd and 3rd luminosity scan runs

- \succ The tracking efficiency is relatively lower than the 1st runs
- \succ The h3/4 trigger efficiency is also very high
- > The CPU LT also very high
- > The HW and Hel scalers are also good

19

BCM calibration: BCM2:

gain = 5707, offset = 249300

BCM4A: gain = 9597, offset = -1839

Offset that cancels the anti-boiling

- Summary for all the 3 sets of luminosity runs:
 - Equivalent current offset: offset_diff = (offset_new offset_calib) / gain_calib
- > The new BCM offsets go beyond the error bar in Christine's BCM calibration results (about twice of the error bar)
- > The offset_diff for KaonLT is only about 33nA (0.033 μ A)
- \succ Considering the LT issue in the 1st runs:
 - 1. Although the scaler maybe not stable, the tracking and non-tracking yield are still showing the anti-boiling effect
 - 2. If we just ignore the 1st runs, the 2nd and 3rd runs also show the anti-boiling effect

	Carbon runs	Current(µA)	BCM4A		BCM2	
			offset	offset_diff	offset	offset_diff
Fall 2023	1523-1530	5-40	103	0.20 µA	250219	0.16 μA
May 13, 2024	6845-6849	3-20	588	0.25 μA	250390	0.19 μA
May 19, 2024	7003-7007	5-40	47	0.20 µA	250281	0.17 μA

Unit of slope: % in 100 μ A

LH2 Boiling effect based on different BCM offsets

> If we just assume the new BCM offsets are correct and see the impact on the LH2 boiling slope (tracking yield):

DCM4A offerst	LH2 tracking yield vs. current slope			
BUM4A OHSet	Fall 2023 runs	May 13, 2024 runs		
103	-7.576	-8.764		
588	-10.653	-14.384		
47	-7.220	-8.106		

The boiling correction for LH2 at 100 μ A: 10.8 ± 3.6 %	
The boiling correction for LH2 at 25 μ A: 2.7 \pm 0.9 %	

BCM2 offset	LH2 tracking yield vs. current slope			
	Fall 2023 runs	May 13, 2024 runs		
250219	-7.822	-9.130		
250390	-9.647	-12.407		
250281	-8.481	-10.309		

The boiling correction for LH2 at 100 μ A: 10.1 ± 2.3 % The boiling correction for LH2 at 25 μ A: 2.525 ± 0.575 %

- > The anti-boiling effect is much larger for the 2^{nd} luminosity scan runs (May 13, 2024)
- > The existence of 2nd luminosity scan runs could bring at most 1% uncertainty to the LH2 boiling correction (at 25 μ A)

Unit of slope: % in 100 μ A

LD2 Boiling effect based on different BCM offsets

> If we just assume the new BCM offsets are correct and see the impact on the LD2 boiling slope (tracking yield):

DCM/A offect	LD2 tracking yield vs. current slope		
DUNI4A OIISEU	Fall 2023 runs		
103	-5.817		
588	-7.322		
47	-5.644		

The boiling correction for LD2 at 100 μ A: 6.5 \pm 0.84 % The boiling correction for LD2 at 25 μ A: 1.625 \pm 0.21 %

DCM2 offect	LD2 tracking yield vs. current slope		
BCM2 onset	Fall 2023 runs		
250219	-5.229		
250390	-6.126		
250281	-5.556		

The boiling correction for LD2 at 100 μ A: 5.678 \pm 0.45 % The boiling correction for LD2 at 25 μ A: 1.420 \pm 0.112 %

Summary

- 1. There are 3 sets of luminosity scan runs
 - Many of the 1st set of luminosity scan runs have unhealthy scalers (highly related with the low efficiency runs)
 - > The unbroken Hel scaler improves the CPU LT but it's still not close to 100%
 - ▶ The 2nd and 3rd sets of runs have healthy scalers and high CPU LT
- 2. All carbon runs show anti-boiling with the BCM calibration results
 - > The 2nd set of luminosity scan runs show a much larger anti-boiling effect
 - > The existence of 2nd luminosity scan runs could bring at most 1% uncertainty to the LH2 boiling correction (at 25 μ A)
 - The LD2 boiling effect is smaller than the LH2
- 3. The beam current offset should be about 200nA to make the carbon yield flat
 - It goes beyond the error bar in Christine's BCM calibration results (about twice of the error bar)
 - > The value for KaonLT is only about 33nA

THANKS!

■ h3/4 trigger efficiency

Backup

h3/4 trigger efficiency

Assume for plane i , that Li is the probability of being unblocked or "Live", and Di is the probability of being "Dead". Of course, Li + Di = 1, for i = 1, 4. We can generate a list of all combos by multiplying out

(L1+D1)*(L2+D2)*(L3+D3)*(L4+D4)

and here they are (the multiplication signs are implicit):

```
The deadtime for the 1<sup>st</sup> plane is
D1 = Rate1*DPR
L1=1-D1
and similarly for the other 3 planes.
```

L1L2L3L4	L1L2L3D4	L1L2D3L4	L1L2D3D4
L1D2L3L4	L1D2L3D4	L1D2D3L4	L1D2D3D4
D1L2L3L4	D1L2L3D4	D1L2D3L4	D1L2D3D4
D1D2L3L4	D1D2L3D4	D1D2D3L4	D1D2D3D4

If your eyes are glazing over, these are readily interpretable. Eg, the combo label "L1D2L3D4" means "(Prob the 1st plane is Live) x (Prob the 2nd plane is Dead) x (Prob the 3rd plane is Live) x (Prob the 4th plane is Dead)"

CPU LT: 1st set of luminosity scan runs (Fall 2023)

When HW scalers are bad, if Hel scaler gives better result?

CPU LT vs. Beam current (Carbon)

 $LT = \frac{\# \text{ of events (no EDTM)}}{\text{scaler_htrig4} - \text{scaler_edtm}} \times \text{ ps factor}$

CPU LT vs. PS4 trigger rate (after PS) (Carbon)

CPU LT: 1st set of luminosity scan runs (Fall 2023)

When HW scalers are bad, if Hel scaler gives better result?

CPU LT vs. Beam current (LD2)

CPU LT vs. PS4 trigger rate (after PS) (LD2)

28

CPU LT: 1st set of luminosity scan runs (Fall 2023)

When HW scalers are bad, if Hel scaler gives better result?

CPU LT vs. Beam current (LH2)

CPU LT vs. PS4 trigger rate (after PS) (LH2)

CPU LT: 2nd set of luminosity scan runs (Fall 2023)

CPU LT: 2nd set of luminosity scan runs (Fall 2023)

31

CPU LT: 3rd set of luminosity scan runs (Fall 2023)

32_

Counts / Intercept

Yield vs beam current

- 1st luminosity scan runs \geq
- BCM4A used for charge and current calculation \succ
- BCM4A gain = 9597 \geq
- BCM4A offset = -1839 \geq

0.94

0.92

0.9 l

 γ^2 / NDf = 35.355 / 2

5

Offset that cancels the anti-boiling

- \succ 1st luminosity scan runs
- BCM4A used for charge and current calculation
- \blacktriangleright BCM4A gain = 9597
- $\blacktriangleright \quad \text{BCM4A offset} = 103$

Slope : -6.824 % in 100 µA Slope : -8.832 % in 100 µA Slope : -7.576 % in 100 µA

15

 γ^2 / NDf = 37.310 / 2

10

 χ^2 / NDf = 11.726 / 2

25 Beam Current (uA)

20

34

1.02

0.98

0.96

0.94

0.9

Yield vs beam current

- 1st luminosity scan runs \geq
- BCM2 used for charge and current calculation \succ
- BCM2 gain = 5707 \geq
- BCM2 offset = 249300 \geq

Charge normalized El-Real events(LD2)

Slope : 3.140 % in 100 uA Slope : 0.756 % in 100 uA Slope : 2.038 % in 100 uA $0.92 - \chi^2 / \text{NDf} = 153.559 / 2$ γ^2 / NDf = 83.882 / 2 γ^2 / NDf = 27.065 / 2 25 5 10 15 20 Beam Current (uA)

Offset that cancels the anti-boiling

- \succ 1st luminosity scan runs
- BCM2 used for charge and current calculation
- $\blacktriangleright \quad BCM2 gain = 5707$
- $\blacktriangleright \quad BCM2 \text{ offset} = 250219$

Charge normalized El-Real events(LD2)

Yield vs beam current

- \succ 2nd luminosity scan runs
- BCM4A used for charge and current calculation
- \blacktriangleright BCM4A gain = 9597
- $\blacktriangleright \text{ BCM4A offset} = -1839$
- > The anti-boiling effect is much larger for the 2^{nd} luminosity scan runs

Charge normalized El-Real events(LH2)

Yield vs beam current

- \succ 2nd luminosity scan runs
- BCM2 used for charge and current calculation
- ➢ BCM2 gain = 5707
- \blacktriangleright BCM2 offset = 249300
- > The anti-boiling effect is much larger for the 2^{nd} luminosity scan runs

Charge normalized El-Real events(LH2)

Yield vs beam current

- ➢ 3rd luminosity scan runs
- BCM4A used for charge and current calculation
- $\blacktriangleright \quad \text{BCM4A gain} = 9597$
- → BCM4A offset = -1839

Charge normalized El-Real events(Carbon)

- ➢ 3rd luminosity scan runs
- BCM2 used for charge and current calculation
- ➢ BCM2 gain = 5707
- \blacktriangleright BCM2 offset = 249300

Yield plots: 1st set of luminosity scan runs (Fall 2023)

HW scaler

Charge normalized El-Real events(Carbon)

The scaler yield from Hel scaler also contains the EDTM events (there's no EDTM scaler in TSHelH tree)

Hel scaler

Yield plots: 1st set of luminosity scan runs (Fall 2023)

41

HW scaler

Charge normalized El-Real events(LH2)

Hel scaler

Charge normalized El-Real events(LH2)

Yield plots: 1st set of luminosity scan runs (Fall 2023)

HW scaler

Charge normalized El-Real events(LD2)

Hel scaler

 χ^2 / NDf = 473.328 / 3

35

40

Beam Current (µA)

30

Yield plots: 2nd set of luminosity scan runs (Spring 2024)

HW scaler

Charge normalized El-Real events(Carbon)

Hel scaler

Yield plots: 2nd set of luminosity scan runs (Spring 2024)

HW scaler

44

Charge normalized El-Real events(LH2)

Hel scaler

Yield plots: 3rd set of luminosity scan runs (Spring 2024)

HW scaler

Hel scaler

