
Multi-Threaded
Waveform Fitting
MITCH KERVER

5/5/2025

5/5/2025 2025 NPS COLLABORATION MEETING 2

Multi-Threading the Waveform Analysis

• Runs are broken up into multiple segments with up to ~500k events per segment.

• Original waveform fitting code estimated to take up to 25days for the longest segments!!

• Max wall time on the farm CPUs ~2 day -> jobs will fail

• Solutions:
• Further subdivide each segment, run wf analysis, then recombine.
• Run wf analysis across multiple CPU threads.

• Give each job #of cores ≈
𝐷𝑎𝑦𝑠 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

2 𝐷𝑎𝑦 𝑤𝑎𝑙𝑙𝑡𝑖𝑚𝑒

5/5/2025 2025 NPS COLLABORATION MEETING 3

Original Code Structure – Wassim/Malek

Read in elastic reference waveforms and interpolate.
Loop over all events{
 Loop over all blocks{

▪ Fill histogram with 110-sample ADC waveform.
▪ Scan for 5 consecutively increasing samples + 2 decreasing = pulse found.
▪ If pulse found use the peak amplitude and time as initial fit parameters.

▪ If no pulse found or pulses are outside coincidence window -> add new
“pulse” with fit parameters =2mV at the expected coincidence time.

▪ Create a fit function: 𝑓(𝑡) = 𝐴 ⋅ 𝑅interp(𝑡 − 𝑡0)
𝑅interp 𝑡 = interpolated reference shape

▪ Perform 2 minimization between fit function and histogram.
▪ Save the final amplitude and time fit parameters in ROOT branches

 }
}

5/5/2025 2025 NPS COLLABORATION MEETING 4

RDataFrames

• ROOT’s multi-thread friendly interface for data analysis built around a column/row structure.
• Rows represent the event number, and Columns represent a TTree branch, variable, or even a function!
• Fill the first columns with branches from the input ROOT file
• Make new columns containing logic/variables needed for WF fitting.
• No Looping over events anymore. ROOT handles filling all columns for each row on different threads.
• When all entries are filled…snapshot the Rdataframe into a normal Root Ttree for output!

Event# G_evnum ADCsamples[1080] ADCpedestal[1080] … FitFucntion() Fit Amplitude[1080]

1

2

3

4

…

Imported Branches from TTree New columns created for output

1 CPU thread per row. Will execute FitFunction() and store its output in column

5/5/2025 2025 NPS COLLABORATION MEETING 5

First Approach

• Create a Rdataframe with a new column that is a function which contains ALL the logic within the

original event loop (slide3)

• Whenever a thread evaluates a row of the Rdataframe it will call the function with a unique set of all its

local variables (histograms, interpolator, fit function, etc)

• The output of that function is stored in that column for the corresponding row

Pros:
• Maintain exact same logic and data structures as original code
• Same fitting routine -> Outputs should be identical (with very small numerical differences)

• Avoid having to deal with Mutex and threads sharing variables
Cons:

• Rdataframes doesn’t support selecting subset of events with Multi-threading enabled;
 Either must run on entire ROOT file, or if just over a subset of events limit to only 1 thread. 

5/5/2025 2025 NPS COLLABORATION MEETING 6

Initial Comparisons

• Compared to runs done by Wassim of just first 5k
events (must run on 1 thread)
• Fit amplitudes match very well!
• 2 distributions match

• Compared a few small full segments on multi-threads
• Fit amplitudes still agreeing!
• Often seg faulted with higher core counts > 3

…hmm

AmpOriginal Code - Amp
MT Code

5𝑘 𝑒𝑣𝑒𝑛𝑡𝑠 × 7 × 7𝑏𝑙𝑜𝑐𝑘𝑠 × ~2 𝑝𝑢𝑙𝑠𝑒𝑠 × #𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

5/5/2025 2025 NPS COLLABORATION MEETING 7

First Issue: Minuit

• Each thread has its own unique TF1::Fit() object. TF1::Fit() uses the Minuit minimizer.
• Turns out when the Fit() is called, the minimizer uses some shared global variables in the backend.

• Running the code with a low thread count (2) and small number of events less likely for threads to call
Minuit simultaneously -> no errors

• Explains why crashed with higher thread count jobs!

• Solution:
• Use Fit::Fitter() objects instead, that can utilize the newer Minuit2 minimizer, which is thread safe!

• Working with Fit::Fitter() has brought several complications:
• The underlying fit method is no longer the same as original code
• Fits often fail if waveform is noisy or flat
• Very sensitive to initial parameters
• Doesn’t respect set parameter limits

• See how these manifest with some examples…

5/5/2025 2025 NPS COLLABORATION MEETING 8

Reference Pulse Concerns: Fitting Noise
• No pulse found -> seed fit parameters with a 2mV pulse at the reference time AND still performs a fit
• Original code with TF1::Fit() can set strict fit parameter limits (0.05 , 10)

• Minuit2 will not stay bounded in order to minimize 2.

• Example:
 TF1::Fit() is seeded with reference pulse Ampl=2 Minuit2 finds no pulse and fits noise (expensive) Ampl= -0.2

From param limits

5/5/2025 2025 NPS COLLABORATION MEETING 9

Reference Pulse Concerns: Another Example
• If a pulse is not within a certain distance of expected coincidence time, the fit is seeded with

parameters of a new reference pulse of 2mV at the ref time.
• Original code with TF1::Fit() can set strict fit parameter limits (0.05 , 10)

• Minuit2 will not stay bounded in order to minimize 2.

Fit Parameters:
 89 , 0.05

Fit Parameters:
308 , -219

Example: Similar fit quality and both very good 2 . But got there by different means.
If only 1 set of parameters existed, it would give same result.

Second “pulse”
parameter is bounded

5/5/2025 2025 NPS COLLABORATION MEETING 10

Fit Failures

• Noticed in frequent instances of original code having strange fit behavior.

• Need to investigate with Wassim. Possibly due to the added reference pulse?

• Haven't noticed this behavior with the Minuit2 fits

5/5/2025 2025 NPS COLLABORATION MEETING 11

Timing Performance

Run # Events Time 5k
events
(sec)

Approx
time for all
events

Total CPU
Time

Real time Time
Saving

Cores
Used

1812 83,269 1,943 32,358 37,685 10,140 3.2x 4

1776 192,664 810 31,211 52,408 6,840 4.6x 8

ok

Not as great

• 2 Test runs with most recent Minuit2 code
• Less than linear speed up with core count 
• A lot of CPU time wasted trying to fit noisy events. If 1 failed fit, it retries with

more iterations and different (more expensive) fit strategy

• Once a decision is made on how to treat these events, the time per event should
decrease significantly

Past performance test with old Fit code were closer to linear, so I feel confident improvements here!

5/5/2025 2025 NPS COLLABORATION MEETING 12

Summary

• Original implementation with Rdataframe failed from non-thread-safe TF1::Fit() method.
• Output fits matched original code very well though.

• Changed to a new fit method Minuit2
• Thread-safe!
• Cannot rely on constraining fit parameters

• Seeing odd fit behavior from edge cases when using added “reference pulses”
• Still thinking about how to handle these

• Time saving does not yet seem linear with core count
• Optimistic fitting less noisy events will greatly speed up code

• The Good News:
It runs, it runs faster, and it produces good fits (good 2)

Thank You!

5/5/2025 13

Past Analysis Meeting Slides

5/5/2025 14

Performance
• Compared CPU time for a small segment of the kin_x25 pass2

replay. Run/segment 5137_10 (only 5012 events)

• When ran on an interactive farm node:
• Original code = 4.4hr
• MT code on 4 threads = 50min
• MT code on 6 threads = 25min

• Better scaling than simply dividing by #cores because of small
optimizations and not writing fitted waveform histos to output
rootfile

• Job used ~1.25GB memory. Not sure how this scales with # of
events? (more dataframe rows will grow memory footprint)

• Issue to investigate: Same exact code ran on the batch farm
(swif2) took 2.5hr(4cores) and 1.25hr(6cores) . Same number
of threads. Will reach out to Brad S. for ideas here.

5/5/2025 15

Waveform Results

Tried to limit changing any logic of original code. Fits
should be exact same.

Compare the distributions of 2 , wf amplitudes, and
time shift of pulses w.r.t the reference waveform.

Distributions look similar, but not exactly the same -
>Look at event-per-event difference

Original Code MT Code

2
Original Code - 

2
MT Code

5/5/2025 16

Waveform Results
Tried to limit changing any logic of original code. Fits
should be exact same.

Compare the distributions of 2 , wf amplitudes, and
time shift of pulses w.r.t the reference waveform.

Distributions look similar, but not exactly the same -
>Look at event-per-event difference

MT CodeOriginal Code

5/5/2025 17

Waveform Results
Tried to limit changing any logic of original code. Fits should be exact same.

Compare the distributions of 2 , wf amplitudes, and time shift of pulses w.r.t the
reference waveform.

Difference in entries comes from a new restriction on the pulse
selection in Wassim’s code. Is now added to MT code.

5/5/2025 18

Waveform Fit Comparison?

Diagnostic interest to compare the WF fits for conflicting events

Several challenges in the way:
◦ ROOT rDataFrames does not support multi-threaded I/O

◦ Each thread cannot simultaneously write histograms of the fitted waveform to the same rootfile

◦ Storing the histograms in the dataframe would blow-up memory usage. Unlike serial event loops
where the histos are written from memory to disk then deleted, the dataframe stores all histos in
memory then “snapshots” everything to disk at the end (# histos in memory = 1080 blocks x millions of
events!)

◦ As a work around, each thread can write it’s event’s histos to it’s own rootfile. End up with many tiny
root files of one events worth of histos. (Maybe can combine them in a post process?)

◦ Wassim’s original code only stores the last event histos in the rootfile. He
would have to update his code and rerun it on

◦ Initial inspection: Selected 5 events with “large” 2 difference. Look at them by
eye, fits look okay.

5/5/2025 19

Summary

Multi-threaded version of waveform code runs and offers time saving proportional to number
of cores used. Can significantly lower Walltime for large segments

Waveform fitting seems to be good (acceptable 2 and h1time distributions)

Fits don’t seem to be exactly the same as Wassim’s original code.

Doing event-by-event fit comparisons would take some time.

Still want to investigate memory usage scaling for very large run segments

Code found at: https://github.com/mkerv/nps-waveform-analysis/tree/timing-update

5/5/2025 20

	Slide 1: Multi-Threaded Waveform Fitting
	Slide 2: Multi-Threading the Waveform Analysis
	Slide 3: Original Code Structure – Wassim/Malek
	Slide 4: RDataFrames
	Slide 5: First Approach
	Slide 6: Initial Comparisons
	Slide 7: First Issue: Minuit
	Slide 8: Reference Pulse Concerns: Fitting Noise
	Slide 9: Reference Pulse Concerns: Another Example
	Slide 10: Fit Failures
	Slide 11: Timing Performance
	Slide 12: Summary
	Slide 13: Thank You!
	Slide 14: Past Analysis Meeting Slides
	Slide 15: Performance
	Slide 16: Waveform Results
	Slide 17: Waveform Results
	Slide 18: Waveform Results
	Slide 19: Waveform Fit Comparison?
	Slide 20: Summary

