

NPS Calorimeter Elastic Analysis

Wassim Hamdi

Supervisor: Malek Mazouz

Faculty of Sciences of Monastir Tunisia

5th of May 2025

NPS Collaboration Meeting

Outlines

- Waveform Analysis
- Temperature Interpolation
- Energy Resolution
- Time Resolution

Elastic Runs Analyzed (Entire Experiment!)

1 st run/last run	Total of runs	HMS Central Momentum	Ee (GeV)	D.Calo (m)	Pass
6171/6183	13	3.1615	5.681	9.5	4
6151/6168	18	2.639	4.598	9.5	3
5217/5236	20	2.639	4.598	9.5	3
5183/5208	26	4.31	7.072	9.5	5
3883/3898	16	4.078	7.072	9.5	5
2900/2920	21	4.12	5.681	8	4
2875/2885	11	4.0872	7.072	9.5	5
2855/2871	17	4.0782	7.072	9.5	5
1969/1982	14	4.087	7.072	9.5	5
1423/1511	23	4.087	7.072	9.5	5

Overview Of The WF Method

Reference Shape Check

- Tried a new method (mean of all waveforms) to determine the reference shapes instead of using the samples search logic:
 - One pulse waveforms
 - Minimum of 10 mV
 - +/- 5 samples from the coincidence time
 - + Black plot => Method of samples search logic
 - + Red plot => Mean of all waveforms for each block

• The reference shapes of both methods are almost compatible for the 1080 blocks (Normalized to 1 mV). They gave almost the same energy resolution.

Fit of the waveforms

Produce a Fit function for each block

(mV) Interpolate the 110 samples of the normalized ref. wf. ref. wf. with Spline to create a spline interpolation 0.8 function *f(t)* 0.6 The fit function: Npulses 0.4 **Bkg** region Pulse region Bkg $F(t) = B + \sum_{i=1}^{n} A_i f(t - t_i)$ ►◀ 0.2 Baseline Amplitude Time of pulse #i 20 40 60 80 100 (4*ns) relatively Time (4 ns) to the ref wf time

Elastic Calibration

- The recoiled proton was detected by the HMS and the scattered electron by the NPS
- Using the conservation of energy for a j event we get:

$$E_j = E_b + m - E_j^p$$

- With E_b : the beam energy E_j^p : the proton energy
- We define the following minimization procedure:

$$\chi^{2} = \sum_{j=1}^{N} \left(E_{j} - \sum_{i} C_{i} \cdot A_{j}^{i} \right)^{2} \longrightarrow \frac{\partial \chi^{2}}{\partial C_{k}} = -2C_{k} \sum_{j=1}^{N} (E_{j} - \sum_{n} C_{i} \cdot A_{j}^{i}) A_{j}^{k} = 0$$

$$\sum_{j=1}^{N} \left[\sum_{i=1}^{N} A_{i}^{k} A_{i}^{i} \right] C_{i} = \sum_{i=1}^{N} E_{i} A_{i}^{k} \longrightarrow 1080 \text{ linear set of equations obta}$$

 $\implies \sum_{i} \left[\sum_{j=1}^{k} A_{j}^{\kappa} A_{j}^{i} \right] C_{i} = \sum_{j=1}^{k} E_{j} A_{j}^{\kappa} \implies$ 1080 linear set of equations obtained

• We finally invert the matrix and get the calibration coefficients

- 5 iterations were performed until a stability in the resolution was found
 - 7

Temperature Interpolation Results

Temperature Interpolation Results

3D Interpolation

• Added a linear interpolation along the depth of the crystals:

$$T_{\mathrm{middle}}[i] = rac{(T_{\mathrm{back}}[i] - T_{\mathrm{front}}[i]) \cdot a}{\mathrm{dist_front_back}} + T_{\mathrm{front}}[i]$$

a = 10 cm (shower depth used in this example)
 dist_front_back = 20 cm (depth of the crystal)

- Temperature correction for each event was performed and tested
- The temperature for most of the elastic settings (9/10) were stable

Temperature fluctuation problem

From September to December

• A lot of fluctuations and jumps in the readout of the temperature sensors

Cluster Energy Threshold Correction

- The fraction of the energy loss in the cluster energy increases with the increase of the pulse threshold used
- This is the optimized empirical cut we used to correct for the threshold effect:

 $\left(\frac{\text{clusener}}{1+0.05 \cdot (\text{clusener} - \text{mean}_{\text{energy}})} - E_{\text{th}}\right) > \text{mean}_c - 2 \cdot \sigma_c$

With Eth= Ee calculated from the HMS information of the proton

- These are the results for the setting 2855-2871 (one of the best in terms of resolution)
- The temperature for this setting was stable
- 5 iterations during the minimization was performed

Individual settings results (optimal cuts per setting)

Setting	C.Factor	HMS Momentum	Theoretical Ee	σ_{NC} (Step5)	$(\sigma/E)_{NC}$ (Step5)	σ_C (Step5)	$(\sigma/E)_C$ (Step5)
			(GeV)				
6151/6168	0.11	2.622	4.507	$81.06 \pm 1.92 \times 10^{-4}$	1.79	$57.670 \pm 1.11 \times 10^{-4}$	1.27
5217/5236	0.11	2.620	4.507	$76.90 \pm 2.31 \times 10^{-4}$	1.70	$56.30\pm1.31\times10^{-4}$	1.24
6171/6183	0.05	3.578	5.660	$86.22\pm5.65\times10^{-4}$	1.51	$71.59 \pm 5.22 \times 10^{-4}$	1.25
2907/2920	0.045	4.072	5.170	$80.88 \pm 2.02 \times 10^{-3}$	1.53	$68.42 \pm 1.52 \times 10^{-4}$	1.29
1969/1982	0.05	4.059	7.284	$104.17 \pm 5.20 \times 10^{-4}$	1.42	$89.15 \pm 4.91 \times 10^{-4}$	1.22
2855/2871	0.05	4.048	7.292	$110.85 \pm 4.67 \times 10^{-4}$	1.50	$88.85 \pm 3.07 \times 10^{-4}$	1.21
2875/2885	0.05	4.050	7.284	$113.38 \pm 7.01 \times 10^{-4}$	1.54	$88.22\pm5.90\times10^{-4}$	1.20
3883/3898	0.05	4.054	7.293	$110.25\pm6.23\times10^{-4}$	1.51	$92.93 \pm 4.54 \times 10^{-4}$	1.27
5183/5208	0.045	4.310	7.066	$109\pm7.59\times10^{-4}$	1.54	$94.96\pm5.66\times10^{-4}$	1.33

1.20% resolution!!

Common cuts used for comparison

Setting	σ_{NC} (Step5)	$(\sigma/E)_{NC}$ (Step5)	σ_C (Step5)	$(\sigma/E)_C$ (Step5)
6151/6168	$81.31 \pm 2.13 \times 10^{-4}$	1.80	$64.71 \pm 1.48 \times 10^{-4}$	1.43
5217/5236	$76.26 \pm 2.25 \times 10^{-4}$	1.68	$61.22 \pm 1.58 \times 10^{-4}$	1.35
6171/6183	$88.21 \pm 6.68 \times 10^{-4}$	1.55	$73.88 \pm 6.53 \times 10^{-4}$	1.29
2907/2920	$78.20 \pm 3.64 \times 10^{-4}$	1.45	$70.04 \pm 3.11 \times 10^{-4}$	1.36
1969/1982	$102.30 \pm 6.5 \times 10^{-4}$	1.41	$88.56 \pm 4.84 \times 10^{-4}$	1.22
2855/2871	$109.5 \pm 4.73 \times 10^{-4}$	1.49	$89.10 \pm 3.21 \times 10^{-4}$	1.22
2875/2885	$113.45 \pm 6.95 \times 10^{-4}$	1.54	$90.09 \pm 6.11 \times 10^{-4}$	1.23
3883/3898	$110.68 \pm 6.05 \times 10^{-4}$	1.51	$93.29 \pm 4.43 \times 10^{-4}$	1.28
5183/5208	$110.40 \pm 8.02 \times 10^{-4}$	1.55	$96.79 \pm 5.98 \times 10^{-4}$	1.36

Resolution vs Run Number

Not Corrected σ/E

Corrected σ/E

Time Resolution

Method:

Time Resolution

- These are the intrinsic time resolution results. The sigma values obtained from the fit of the time distributions are divided by the square root of 2.
- The resolution is always less than 1 ns no matter the energy and obeys the following power law at high energies: $\sigma(E) = 8.79 \cdot E^{-0.647}$

17

Conclusion

- The NPS temperature was very stable during elastic runs, but a correction might be needed for production runs (which will be very challenging to implement)
- Energy Resolution that ranges from 1.2% to 1.3% for all the settings which goes along with the Primex prototype results
- Less than **1ns time resolution** for **all** the energies with the following power law for high energies:

 $\sigma(E) = 8.79 \cdot E^{-0.647}$

Backup

Reference Shape Selection

Problems:

• For the missing 1%:

+ Had to use some severe conditions for few blocs (1 ascending sample) to get rid of the small bumps

+ Display the 10% highest amplitude waveforms and chose the best one even if it's not the highest amplitude one (- 50 mV at most from the highest waveform)

+ Removed background conditions on some of them since they are so noisy

+ Removed all the pulse conditions and left the major constraints on the time and amplitude which brought a higher and more stable pulse shape

=> Now we have the best reference shapes for one setting

=> Same procedure was done for **10** settings

=> More than 10000 reference shapes in pocket!

Solutions:

- BKG1+BKG2:
- + A maximum of 2 consecutive ascending samples
- Pulse region:
- + A maximum of 3 ascending consecutive samples in the region between the peak sample and the 80th sample
- => 99% of the pulses were in a perfect shape (checked every one of them!)
- => We need that 1% too!!

Reference Shape Check

- Analyzed elastic runs: 6172 to 6179
- Mean energy of electrons: 5.7 GeV
- HMS central Momentum: 3.1615

- Found the expected energy resolution for this setting
- Almost the same energy resolution using both methods

From literature for the case of PW04

• Expected resolution: $\sigma/E = 2.4\% = 1\%$

From the first setting analyzed by Malek

RESULTS Runs: 1423/1511

Pulse Peak Amplitude

Ee = 7.072 GeV

GeV Time of the 1st sample > threshold

- => Now we have the best reference shapes for one setting
- => Same procedure was done for 10 settings
- => More than 10000 reference shapes in pocket!

Temperature Sensors Readout problem

First sensor's temperature was stored in the second sensor and so on for the others

Temperature Interpolation Results

Back Sensors

Swap in the map (first problem found)

Pulse Peak Amplitude

Ee = 7.072 GeV Time of the 1st sample > threshold

RESULTS Runs: 2855/2871

Pulse Peak Amplitude

Ee = 7.072 GeV

Time of the 1st sample > threshold

RESULTS Runs: 2875/2885

Pulse Peak Amplitude

Ee = 7.072 GeV

Time of the 1st sample > threshold

+ A low amplitude for Block 83

RESULTS Runs: 2900/2920

Pulse Peak Amplitude

Ee = 5.681 GeV

Time of the 1st sample > threshold

- + Block 625 missing!!
- + A low amplitude for Block 624

RESULTS Runs: 3883/3898

Pulse Peak Amplitude

Ee = 7.072 GeV

Block 529 missing!!

RESULTS Runs: 5183/5208

Pulse Peak Amplitude

Ee = 7.072 GeV

Time of the 1st sample > threshold

+ 4 dead blocks!

RESULTS Runs: 5217/5236

Pulse Peak Amplitude

Ee = 4.598 GeV

Time of the 1st sample > threshold

+ 4 dead blocks!

RESULTS

Runs: 6151/6168

Pulse Peak Amplitude

Ee = 4.598 GeV

Time of the 1st sample > threshold

RESULTS

Runs: 6171/6183

Pulse Peak Amplitude

Ee = 5.681 GeV

Time of the 1st sample > threshold

Setting	Start Date	Beam	E_e	N.Runs	Run Numbers	Detector	Geometrical Cuts	Geometrical Cuts
		(GeV)	(GeV)				(plots)	(minimization)
6151/6168	2024/04/22	6.397	4.524	18	$6151 \rightarrow 6168$	All on	$linc[0] \ge 0 + 2 \& linc[0] \le$	$icol \ge 0 + 1 \& icol < ncol$
							36 - 1 - 2	- 1 - 1
							$\operatorname{colc}[0] \ge 0 + 2 \& \operatorname{colc}[0] \le$	$\lim \ge 0 + 1 \& \lim \le n \le -$
							30 - 1 - 2	1 - 1
5217/5236	2024/03/11	6.395	4.532	11	$5226 \rightarrow 5236$	28,749,1076 off	$linc[0] \ge 0 + 2 \& linc[0] \le$	$icol \ge 0 + 1 \& icol < ncol$
							36 - 1 - 2	- 1 - 1
							$\operatorname{colc}[0] \ge 4 + 2 \& \operatorname{colc}[0] \le$	$\operatorname{ilin} \ge 0 + 3 \& \operatorname{ilin} \le \operatorname{nlin} -$
							30 - 1 - 2	1 - 1
6171/6183	2024/04/24	8.477	5.706	8	$6172 \rightarrow 6179$	All on	$linc[0] \ge 0 + 2 \& linc[0] \le$	$icol \ge 0 + 1 \& icol < ncol$
							36 - 1 - 2	- 1 - 1
							$\operatorname{colc}[0] \ge 0 + 2 \& \operatorname{colc}[0] \le$	$\operatorname{ilin} \ge 0 + 1 \& \operatorname{ilin} \le \operatorname{nlin} -$
							30 - 1 - 2	1 - 1
2907/2920	2023/11/14	8.477	5.236	13	$2907 \rightarrow 2920$	5 columns + 625 off	$linc[0] \ge 0 + 2 \& linc[0] \le$	$icol \ge 4 + 1 \& icol \le ncol$
							36 - 1 - 2 + cut 625	- 1 - 1+ cut 625
							$\operatorname{colc}[0] \ge 4 + 2 \& \operatorname{colc}[0] \le$	$\operatorname{ilin} \ge 0 + 1 \& \operatorname{ilin} \le \operatorname{nlin} -$
							30 - 1 - 2	1 - 1
1423/1560	2023/09/25	10.543	7.298	6	$1437 \rightarrow 1442$	All on	$linc[0] \ge 0 + 2 \& linc[0] \le$	$icol \ge 0 + 1 \& icol < ncol$
							36 - 1 - 2	- 1 - 1
							$\operatorname{colc}[0] \ge 0 + 2 \& \operatorname{colc}[0] \le$	$\operatorname{ilin} \ge 0 + 1 \& \operatorname{ilin} \le \operatorname{nlin} -$
							30 - 1 - 2	1 - 1
1969/1982	2023/10/20	10.543	7.270	9	$1974 \rightarrow 1982$	1 column off	$linc[0] \ge 0 + 2 \& linc[0] \le$	$icol \ge 1 + 1 \& icol \le ncol$
							36 - 1 - 2	- 1 - 1
							$\operatorname{colc}[0] \ge 0 + 2 \& \operatorname{colc}[0] \le$	$\lim \ge 0 + 1 \& \lim \le n \le -$
							30 - 1 - 2	1 - 1
2855/2871	2023/11/11	10.544	7.325	14	$2856 \rightarrow 2871$	4 columns off	$linc[0] \ge 0 + 2 \& linc[0] \le$	$icol \ge 4 + 1 \& icol \le ncol$
							36 - 1 - 2	- 1 - 1
							$\operatorname{colc}[0] \ge 4 + 2 \& \operatorname{colc}[0] \le$	$\operatorname{ilin} \ge 0 + 1 \& \operatorname{ilin} \le \operatorname{nlin} -$
							30 - 1 - 2	1 - 1
2875/2885	2023/11/12	10.544	7.353	9	$2875 \rightarrow 2885$	4 columns off	$linc[0] \ge 0 + 2 \& linc[0] \le$	$icol \ge 4 + 1 \& icol \le ncol$
							36 - 1 - 2	- 1 - 1
							$\operatorname{colc}[0] \ge 4 + 2 \& \operatorname{colc}[0] \le$	$\lim \ge 0 + 1 \& \lim \le n \le -$
							30 - 1 - 2	1 - 1
3883/3898	2024/01/25	10.544	7.305	14	$3883 \rightarrow 3892$	All on + 529	$linc[0] \ge 0 + 2 \& linc[0] \le$	$icol \ge 0 + 1 \& icol \le ncol$
							36 - 1 - 2	- 1 - 1 + cut 529
							$\operatorname{colc}[0] \ge 0 + 2 \& \operatorname{colc}[0] \le$	$\lim \ge 0 + 1 \& \lim \le n \le -$
							30 - 1 - 2 + cut 529	1 - 1
5183/5208	2024/03/08	10.542	7.108	18	$5183 \rightarrow 5200$	28,749,1076 off	$linc[0] \ge 0 + 2 \& linc[0] \le$	$icol \ge 0 + 1 \& icol \le ncol$
							36 - 1 - 2	- 1 - 2
							$\operatorname{colc}[0] \ge 0 + 2 \& \operatorname{colc}[0] \le$	$\lim \ge 0 + 1 \& \lim \le n \le -$
							30 - 1 - 3	1-1