New Developments in SoLID Physics Program

Ye Tian For SoLID Collaboration 6/18/2025

New Development List

Proposals:

- □ Double Deeply Virtual Compton Scattering with SoLIDµ spectrometer
- Submitted to PAC53---Alexandre Camsonne's talk
- □ TMD Study with SIDIS on Tensor Polarized Deuteron
- Under development <u>https://indico.jlab.org/event/757/contributions/13741/attachments/10537/15866/SoLID-WInter-2023.pdf</u>

Run group proposals:

- Measurement of the Unpolarized SIDIS Cross Section from a ³He Target with SoLID
- Resubmitted to PAC53
- Studying the Light Sea Quark Asymmetry Using Semi-Inclusive Deep Inelastic Scattering (SIDIS) with the SoLID using a Longitudinally Polarized ³He Target at 8.8 and 11 GeV
- Under development; will be submitted to SoLID ad-hoc review committee and targeted for PAC54

Other Developments:

- \Box A1n/g1n measurements
- □ Inclusive pion measurements

Measurement of the Unpolarized SIDIS Cross Section from a ³He Target with SoLID

Spokespersons

Umberto D'Alesio	Università di Cagliari & INFN Sezione di Cagliari
Matteo Cerutti	Christopher Newport University & Jefferson Lab
Haiyan Gao [*]	Duke University
Shuo Jia	Duke University
Vlad Khachatryan	Indiana University & Duke University
Ye Tian	Syracuse University

E12-10-006 collaboration, E12-11-007 collaboration, and the SoLID Collaboration

- > This run group experiment parasitic to SoLID SIDIS experiments of
- E12-10-006: Single Spin Asymmetries on Transversely Polarized ³He (neutron): Rating A Approved number of days: 48 days (11 GeV) & 21 day (8.8 GeV)
- E12-11-007: Single and Double Spin Asymmetries on Longitudinally Polarized ³He (neutron): Rating A

Approved number of days: 22.5 days (11 GeV) & 9.5 day (8.8 GeV)

SIDIS Process

The SIDIS process represented as (four-momenta given in parentheses)

> Project unpolarized cross-section pseudo-data in 5-D binning

$$x_{\!\scriptscriptstyle bj}, \ P_{hT}, z_h, Q^2, \phi_h$$

Why Measure SIDIS Unpolarized Cross Section

Multiplicities (HERMES/COMPASS) constrain TMDs, but cross-section measurements are essential to test both the shape and normalization, providing a critical test of TMD factorization beyond leading order.

NNNLL means next-to-next-to-next-to-leading-log

SIDIS Unpolarized Cross Section

In LO factorization scheme

$$egin{aligned} rac{d\sigma}{dx_{bj}dydz_hdP_{hT}^2d\phi_h} &= 2\pi\,rac{lpha^2}{x_{bj}yQ^2}\left(1+rac{\gamma^2}{2x_{bj}}
ight) imes\ imes\left[c_1\,F_{UU}+c_2\cos(\phi_h)F_{UU}^{\cos(\phi_h)}+c_3\cos(2\phi_h)F_{UU}^{\cos(2\phi_h)}
ight], \end{aligned}$$

→ Use the following Gaussian parameterizations for the TMD PDF and TMD FF Twist 3 effect: $\cos \phi_h$ dependence

$$F_{UU}^{\cos(\phi_h)} = F_{UU}^{\cos(\phi_h)} \big|_{\text{Cahn}} + F_{UU}^{\cos(\phi_h)} \big|_{\text{BM}}$$

- Cahn effect $\propto f_1 \otimes D_1$
 - Non-zero Cahn effect solely requires non-zero quark transverse momentum
 - Related to quarks' intrinsic transverse momentum distribution

Twist-4 Cahn & twist-2 Boer-Mulders: $cos(2\phi_h)$ dependence

$$F_{UU}^{\cos(2\phi_h)} \approx F_{UU}^{\cos(2\phi_h)} \big|_{\text{Cahn}} + F_{UU}^{\cos(2\phi_h)} \big|_{\text{BM}}$$

• Boer-Mulders effect $\propto h^{\perp}_{1} \otimes H^{\perp}_{1}$

• Twist-4 Cahn effect could have similar size of contribution to $\cos(2\phi_h)$ as Boer- Mulders [Phys. Rev. D. 81:114026 (2010) based on HERMES/COMPASS results]

Systematic Uncertainty Budget for Unpolarized Cross Section

Charged pions

Charged kaons

Sources	Uncertainty
Coincidence acceptance correction	8.2%
Experimental resolution	3.5%
Pion detection efficiency	4%
Electron detection efficiency	< 2%
Radiative corrections	2.1%
Vector meson production	1%
Luminosity determination	$\lesssim 3\%$
Total	$\lesssim 11\%$

Sources	Uncertainty
Coincidence acceptance correction	$\sim 13\%$
Experimental resolution	3.5%
Kaon detection efficiency	11%
Electron detection efficiency	< 2%
Radiative corrections	2.1%
Vector meson production	1%
Luminosity determination	$\lesssim 3\%$
Total	$\lesssim 18\%$

Total uncertainty calculated by rounding off the quadrature sum of separate contributions

Physics Projections

> Produced $\underline{\pi^+}$ unpolarized cross section at **11 GeV** beam energy

SoLID low- Q^2 region

SoLID pseudo-data Central points from simple TMD model

Blue points: Integrated cross section Red points: Cross section including azimuthal modulations

Impact Study of SoLID Pseudo Data

• Final-state hadrons

$$\pi^+ \pi^-$$
$$K^+ K^-$$

• Plotted quantity

 $rac{f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)\!-\!\langle f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)
angle}{\langle f_1^q(x,\!k_\perp^2,\!Q,\!Q^2)
angle}$

- Uncertainty bans account for 68% CL
- SoLID greatly reduces the uncertainty on k_⊥-dependence for the d-quark.

More Physics Projections

Azimuthal modulation effect

$$\frac{d\sigma}{dx_{bj}dydz_hdP_{hT}^2d\phi_h} \equiv \mathcal{F}_{\mathcal{U}\mathcal{U}} = \mathcal{F}_{\mathcal{U}\mathcal{U},\mathcal{A}}\cos 0 + \mathcal{F}_{\mathcal{U}\mathcal{U},\mathcal{B}}\cos(\phi_h) + \mathcal{F}_{\mathcal{U}\mathcal{U},\mathcal{C}}\cos(2\phi_h)$$

Fitting ϕ_h distribution with a simple function: A(1 - B · cos(ϕ_h) - C · cos(2 ϕ_h))

0.55 -	$0.3 < z_h < 0.4$ $1 < Q^2 < 1.5 \ GeV^2$ $0 < x_h < 0.25$ $0 < P_{hT} < 0.2 \ GeV/c$	$-0.4 < z_h < 0.5 \ 1 < Q^2 < 1.5 \ GeV^2$ $0 < x_h < 0.25 \ 0 < P_{hT} < 0.2 \ GeV/c$	$0.5 < z_h < 0.6$ $1 < Q^2 < 1.5 \ GeV^2$ $0 < x_h < 0.25$ $0 < P_{hT} < 0.2 \ GeV/c$	0.00 -	$0.3 < z_h < 0.4$ $1 < Q^2 < 1.5 \ GeV^2$ $0 < x_h < 0.25$ $0 < P_{hT} < 0.2 \ GeV/c$	$0.4 < z_h < 0.5$ $1 < Q^2 < 1.5 \ GeV^2$ $0 < x_h < 0.25$ $0 < P_{hT} < 0.2 \ GeV/c$	$0.5 < z_h < 0.6$ $1 < Q^2 < 1.5 \ GeV^2$ $0 < x_h < 0.25$ $0 < P_{hT} < 0.2 \ GeV/c$
0.50 -							
0.45 -		-	-	-0.02 -		-	
0.40 -		• •	- • •		• •	T	
0.35 -	• •		-	-0.04 -		- •	-
0.35 -	$0.3 < z_h < 0.4 \ 1.5 < Q^2 < 2 \ GeV^2$	$0.4 < z_h < 0.5 1.5 < Q^2 < 2 \text{ GeV}^2$	$0.5 < z_h < 0.6 \ 1.5 < Q^2 < 2 \ GeV^2$	0.050 -	$0.3 < z_h < 0.4 1.5 < Q^2 < 2 \text{ GeV}^2$	$-0.4 < z_h < 0.5 1.5 < Q^2 < 2 \ GeV^2$	$0.5 < z_h < 0.6 1.5 < Q^2 < 2 \ GeV^2$
	$0 < x_b < 0.25$ $0 < T_{h1} < 0.2$ GeV/c	$0 < x_b < 0.25$ $0 < T_{hT} < 0.2$ GeV/C	0 < x _b < 0.25 0 < 7 _h < 0.2 GeV/c	0.025 -	0 < x _b < 0.25 0 < 1 _{h1} < 0.2 Gev/c		
ഥ 0.30 -		- • •	- ╹ ♥	U 0.000 -	• •	- 🔶 🌢	⊦
	•			-0.025 -		-	-
0.25 -		-	-	-0.050 -		-	-
0.35 -	$0.3 < z_h < 0.4$ $2 < Q^2 < 2.5 \ GeV^2$	$-0.4 < z_h < 0.5 \ 2 < Q^2 < 2.5 \ GeV^2$ $0 < x_h < 0.25 \ 0 < P_{hT} < 0.2 \ GeV/c$	$-0.5 < z_h < 0.6 \ 2 < Q^2 < 2.5 \ GeV^2$ $0 < x_h < 0.25 \ 0 < P_{hT} < 0.2 \ GeV/c$	0.05 -	$0.3 < z_h < 0.4$ $2 < Q^2 < 2.5$ GeV ² $0 < x_h < 0.25$ $0 < P_{hT} < 0.2$ GeV/c	$0.4 < z_h < 0.5 \ 2 < Q^2 < 2.5 \ GeV^2$	$0.5 < z_h < 0.6$ $2 < Q^2 < 2.5 \ GeV^2$ $0 < x_h < 0.25$ $0 < P_{hT} < 0.2 \ GeV/c$
0.30 -	0 4 XB 4 0.25 0 4 I MI 4 0.2 00 VIC	-			0 - xp - 0.25 0 - 1 m - 0.2 Gevie	0 4 AB 40.25 0 4 AM 40.2 Gevie	
0.25 -		- 🛉 🛉	- • •	0.00 -		- 🖌 🖌	
0.20 -	• •	-	-		• •		
0.15 -		-	-	-0.05 -		-	- '
	$0.3 < z_h < 0.4$ $2.5 < Q^2 < 3 \text{ GeV}^2$ $0 < x_h < 0.25$ $0 < P_{hT} < 0.2 \text{ GeV}/c$	$0.4 < z_h < 0.5$ $2.5 < Q^2 < 3 \text{ GeV}^2$ $0 < x_h < 0.25$ $0 < P_{hT} < 0.2 \text{ GeV/c}$	$0.5 < z_h < 0.6$ $2.5 < Q^2 < 3 \text{ GeV}^2$ $0 < x_h < 0.25$ $0 < P_{hT} < 0.2 \text{ GeV/c}$	0.1 -	$0.3 < z_h < 0.4$ $2.5 < Q^2 < 3 \text{ GeV}^2$ $0 < x_h < 0.25$ $0 < P_{hT} < 0.2 \text{ GeV/c}$	$0.4 < z_h < 0.5 2.5 < Q^2 < 3 \text{ GeV}^2$ $0 < x_h < 0.25 0 < P_{hT} < 0.2 \text{ GeV/c}$	$0.5 < z_h < 0.6 \ 2.5 < Q^2 < 3 \ GeV^2$ $0 < x_h < 0.25 \ 0 < P_{hT} < 0.2 \ GeV/c$
0.4 -		_ 0 1 % 10.25 0 1 % 10.2 000 %					
0.2 -	• •			0.0 -	↓ ◆	T I	
0.2	•	I		0.1			
0.0 -		-	-	-0.1		ſ	

Red points for π^+ , black points for π^-

Transverse Momentum Widths from Azimuthal Modulations

i i = 0

Transverse momentum widths \geq

$$F_{UU} = \sum_{q} e_q^2 x_{bj} f_q(x_{bj}) D_q(z_h) \frac{e^{-P_{hT}^2/\langle P_{hT}^2 \rangle}}{\pi \langle P_{hT}^2 \rangle} \qquad \text{where } \langle P_{hT}^2 \rangle = \langle p_{\perp}^2 \rangle + z_h^2 \langle k_{\perp}^2 \rangle$$
$$F_{UU}^{\cos(\phi_h)} = F_{UU}^{\cos(\phi_h)} \big|_{\text{Cahn}} + F_{UU}^{\cos(\phi_h)} \big|_{\text{BM}} \qquad \text{In model, we have (in GeV^2)}$$
$$\langle k_{\perp}^2 \rangle = 0.604, \langle p_{\perp}^2 \rangle = 0.$$

ve have (in GeV^2) $.604, < p_{\perp}^2 >= 0.114$

Least_Square =
$$\sum (pseudodata - Model)^2 / (stat + sys)^2$$

The fitting results shows (in GeV²):

$$\langle k_{\perp}^2 \rangle = 0.5871 \pm 0.0002 \; (\text{GeV/c})^2$$

 $\langle p_{\perp}^2 \rangle = 0.1165 \pm 0.0003 \; (\text{GeV/c})^2$

Three contours corresponding to confidence levels of 68%, 90% and 99%

Both Cahn and Boer-Mulders contributions included

All data from positive and negative polarities are considered

The fitting results differs from the model by 4%

By measuring the unpolarized cross section with and without azimuthal modulations, we will be able to extract the Gaussian width parameters $\langle \kappa_{\perp}^2 \rangle$ and $\langle p_{\perp}^2 \rangle$

Studying the Light Sea Quark Asymmetry Using Semi-Inclusive Deep Inelastic Scattering (SIDIS) with the SoLID using a Longitudinally Polarized ³He Target at 8.8 and 11 GeV

Alberto Accardi, Matteo Cerutti

Christopher Newport University and Jefferson Lab, Newport News, VA

Jian-ping Chen, Dave Gaskell, Ching Him Leung, Wally Melnitchouk, Nobuo Sato, and Arun Tadepalli

Thomas Jefferson National Accelerator Facility, Newport News, VA

Christopher Cocuzza William & Mary, Williamsburg, VA

Ye Tian Syracuse University, Syracuse, NY

E12-11-007 collaboration^{\dagger}, and the SoLID Collaboration

- > This run group proposal parasitic to SoLID SIDIS experiments of
- E12-11-007: Single and Double Spin Asymmetries on Longitudinally Polarized ³He (neutron):

Approved number of days: 22.5 days (11 GeV) & 9.5 day (8.8 GeV)

Flavor Asymmetry in Unpolarized Light Sea

- ✓ SeaQuest and earlier experiments show $\overline{d} > \overline{u}$ in the proton sea
- Indicates strong flavor asymmetry in the unpolarized sea
- ✓ Consistent with non-perturbative models:
- Meson cloud models
- Statistical models

What about spin?

Flavor Asymmetry in Polarized Sea

Models of non-perturbative physics that drive the flavor asymmetry for the unpolarized sector have implications for the spin contribution of the polarized light quark sea.

Model Predictions vs Global Fits

- Large uncertainties in $x(\Delta \overline{u} \Delta \overline{d})$
- Unpolarized flavor asymmetry is well established and attributed to non-perturbative effects (e.g., meson cloud).

- Polarized sea flavor asymmetry $\Delta \overline{u} \Delta \overline{d}$ is still poorly constrained .
- High-precision SIDIS with polarized ³He targets can provide key insight

Why JLab is Complementary and Promising

- No significant polarized sea asymmetry observed by COMPASS
- ✓ COMPASS reports a small asymmetry for x < 0.3 although with modest uncertainties -> no discriminatory power between models

Why JLab is Complementary and Promising

• No significant polarized sea asymmetry observed by COMPASS

 ✓ COMPASS reports a small asymmetry for x < 0.3 although with modest uncertainties -> no discriminatory power between models

• DSSV14+RHIC indicates an unambiguous nonzero polarized sea asymmetry:

 $x\Delta \overline{u} > 0$, $x\Delta \overline{d} < 0$

- The inclusion of RHIC data tightens the uncertainties, improving confidence in the flavor separation.
- **SIDIS on neutron targets** still needed to constrain high-x behavior and full shape

Why JLab is Complementary and Promising

0

 $x\Delta\bar{u}(x,Q^2=10 \text{ GeV}^2)$

- No significant polarized sea asymmetry observed by COMPASS
- COMPASS reports a small asymmetry for x < 0.3although with modest uncertainties -> no discriminatory power between models

JLab SoLID SIDIS

- ³He target acts as an effective neutron \rightarrow gives access to flavor-separated spin observables when combined with proton data.
- **Valence region** ($x \sim 0.1 0.5$), where some models predict larger polarized sea asymmetry

DSSV14+RHIC indicates an unambiguous nonzero polarized sea asymmetry:

$$x\Delta \overline{u} > 0$$
, $x\Delta \overline{d} < 0$

- The inclusion of RHIC data tightens the uncertainties, improving confidence in the flavor separation.
- SIDIS on neutron targets still needed to constrain high-x behavior and full shape

SoLID's valence-enhanced SIDIS on polarized ³He offers a powerful opportunity to uncover polarized sea flavor asymmetry.

SoLID@JLab: QCD Intensity Frontier

- Nucleon spin, proton mass, beyond standard model experiments require precision measurements of small cross sections and asymmetries, combined with multiple particle detection
 High Luminosity
 Large Acceptance
- ✤ Science reach:
 - Precision 3D imaging of the nucleon in the valence quark region
 - Beyond Standard Model searches
 - Exploring the origin of the proton mass and gluonic force in the non-perturbative regime.

Large Acceptance Full azimuthal ¢ coverage

Uncertainty Budget for A_{LL} Measurement

• Systematic Uncertainty

^{3}He	Uncertainty
Raw asymmetry (abs.)	negligible
Random coincidence (Rel.)	1%
Polarimetry (Rel.)	4%
Nuclear effects (Rel.)	< 4%
Diffractive vector meson (Rel.)	3%
Radiative corrections (Rel.)	3%
Total (Abs.)/Total (Rel.)	Negligible/7.1%

- Statistic Uncertainty: $\delta A_{LL} = \frac{1}{P_n P_t P_b} \sqrt{\frac{1}{N_{acc}}}$
 - ✓ Polarized neutron target: 3 He
 - ✓ PDF: CJ15lo; Fragmentation function: DSSFFlo
 - ✓ Dilution factor bin by bin $P_n \sim 0.86$
 - ✓ In-beam target polarization P_t : 60%
 - ✓ Beam polarization P_b : 85%
 - ✓ 0 GeV < P_t < 1 GeV, 0.2 <z < 0.6

SoLID @ 11GeV SIDIS Polarized Asymmetries: π/K on n

SoLID Constrains Both Sea Asymmetry and Total Sea Polarization

JAM QCD global analysis framework: next-to-leading order accuracy in perturbative QCD

- Inclusive & semi-inclusive DIS A LL
- Jet production in polarized pp collisions
- W/Z boson production at RHIC

- SoLID helps test if the polarized sea is flavor asymmetric, just like the unpolarized sea
- SoLID's polarized ³He SIDIS data will tighten uncertainties on both valence and sea helicity PDFs, with key impact on flavor decomposition and the polarized sea asymmetry.

 $x\Delta ar{u}$

- Hadron Mass Corrections
- Small kinematic shifts in x_B and z_h ; partly cancel in A_{LL} asymmetries.
- Estimated <10% for pions; kaons may show larger effects.
- Higher Twist Corrections
- <5% effect at $Q^2 \sim 2 \text{ GeV}^2$; often cancel in spin asymmetries.
- Absorb residual theory effects in global fits.
- Uncertainty from High-P_T Region
- SIDIS at large P_T not well constrained; TMD factorization not valid.
- We expect the the size of the missing high-P_T is non-negligible, which varies across different kinematic regions.

• Vector Meson Contamination

- Exclusive rho mesons may affect large-z, $low-P_T$ region.
- Small effect on A_{LL} seen in early studies; more work needed.
- Other Considerations--- collaborate with theorist to address
- Assumptions: charge and isospin symmetry in FFs.
- Nuclear corrections in ³He treated for neutron extraction.
- Possible contamination from non-current fragmentation.

SoLID @ JLab22 SIDIS Polarized \bar{u} and \bar{d} PDFs

- At LO, assuming x z factorization
- $A_{LL}(x,Q^2,z) = \frac{\sum_f e_f^2 \Delta q_f(x,Q^2) \cdot D_f^h(z,Q^2)}{\sum_f e_f^2 q_f(x,Q^2) \cdot D_f^h(z,Q^2)} \overset{\heartsuit}{\times}^{0.08}_{0.06}$
- Using LO Fragmentation Function DSSFFLO
- The band represent the 67% uncertainty band in NNPDFpol1.1
- The SoLID measurement can reach higher x than previous measurements
- With much reduced statistical uncertainty in the light sea quarks compared to COMPASS

from Ching Him Leung

Summary

SoLID is at the intensity frontier with JLab 12 GeV upgrade:

- Rich and highly rated physics programs
- Many other experiments in development
- Address important questions in Nuclear Physics
- Complementary and synergistic to the EIC science programs

Run Group Proposals:

- Unpolarized SIDIS cross section from ³He target (will present at the July 2025 SoLID Collaboration meeting)
 - Simultaneous study of the shape and absolute normalization of the cross section enables direct tests of TMD factorization theorems.
 - Access to **azimuthal modulations** and **flavor dependence** of TMDs; potential to explore **highertwist effects** and their angular signatures.
 - Measurements with a ³He target are sensitive to EMC effect, nuclear binding, Fermi motion, and off-shell corrections
- Light Sea Quark Asymmetry via SIDIS with polarized ³He at 8.8 & 11 GeV (under development, targeting PAC54 submission)
 - Global QCD fits using the **JAM framework at NLO accuracy** show promising sensitivity to polarized sea asymmetry and total sea polarization
 - SoLID's **high-statistics neutron SIDIS** measurements offer precision in the valence-to-sea transition region.
 - Improve the text and address the remaining theoretical systematics

Backup

SoLID ³He SIDIS Sharply Improves Constraints Across All Polarized PDFs

JAM QCD global analysis framework:

- Inclusive & semi-inclusive DIS A_{LL}
- Jet production in polarized pp collisions
- W/Z boson production at RHIC
- SIDIS on polarized ³He provides strong constraints on the d-quark helicity distributions, including both valence and sea components.
- SoLID helps test if the polarized sea is **flavor asymmetric**, just like the unpolarized sea

A Precision Measurement of Inclusive g₂, d₂ with SoLID on a Transversely Polarized ³He Target at 8.8 and 11 GeV

55% target polarization, 85% beam polarization, and 0.17 nitrogen dilution

 F2 from New Muon Collaboration (NMC) parameterization

$$R = g_1^n / F_1^n$$
 from SLAC

- Errors:
- error bars ---- statistic errors
- shadow regions---systematic error

 x^2g_2

Target Single Spin Asymmetry Measurements in the Inclusive Deep-Inelastic Reaction on Transversely Polarized Proton and Neutron (³He) Targets using the SoLID Spectrometer

➤ A_{UT} projection of SoLID He3 large angle detector (LD)

 A_{UT} = A_{y} * sin(ϕ_{s}) with Ay=-0.03 and stat error

More Physics Projections

> Produced π^+ unpolarized cross section at **11 GeV** beam energy

SoLID high- Q^2 region

SoLID pseudo-data Central points from simple TMD model

Blue points: Integrated cross section Red points: Cross section including azimuthal modulations

Naïve x-z factorization & Gaussian ansatz

> Analytical forms of the Cahn and Boer-Mulders azimuthal modulation given by

$$\begin{split} F_{UU} &= \sum_{q} e_{q}^{2} x_{bj} f_{q}(x_{bj}) D_{q}(z_{h}) \frac{e^{-P_{hT}^{2}/\langle P_{hT}^{2} \rangle}}{\pi \langle P_{hT}^{2} \rangle}, \\ F_{UU}^{\cos(\phi_{h})}|_{Cahn} &= -2 \frac{P_{hT}}{Q} \sum_{q} e_{q}^{2} x_{bj} f_{q}(x_{bj}) D_{q}(z_{h}) \frac{z_{h} \langle k_{\perp}^{2} \rangle}{\langle P_{hT}^{2} \rangle} \frac{e^{-P_{hT}^{2}/\langle P_{hT}^{2} \rangle}}{\pi \langle P_{hT}^{2} \rangle}, \\ F_{UU}^{\cos(\phi_{h})}|_{BM} &= 2e \frac{P_{hT}}{Q} \sum_{q} e_{q}^{2} x_{bj} \frac{\Delta f_{q^{\dagger}/p}(x_{bj})}{M_{BM}} \frac{\Delta D_{h/q^{\dagger}}(z_{h})}{M_{C}} \frac{e^{-P_{hT}^{2}/\langle P_{hT}^{2} \rangle_{BM}}}{\pi \langle P_{hT}^{2} \rangle_{BM}^{4}} \\ &\qquad \times \frac{\langle k_{\perp}^{2} \rangle_{BM}^{2} \langle p_{\perp}^{2} \rangle_{C}^{2}}{\langle k_{\perp}^{2} \rangle \langle p_{\perp}^{2} \rangle} \left[z_{h}^{2} \langle k_{\perp}^{2} \rangle_{BM} \left(P_{hT}^{2} - \langle P_{hT}^{2} \rangle_{BM} \right) + \langle p_{\perp}^{2} \rangle_{C} \langle P_{hT}^{2} \rangle_{BM} \right], \\ F_{UU}^{\cos(2\phi_{h})}|_{Cahn} &= 2 \frac{P_{hT}^{2}}{Q^{2}} \sum_{q} e_{q}^{2} x_{bj} f_{q}(x_{j}) D_{q}(z_{h}) \frac{z_{h}^{2} \langle k_{\perp}^{2} \rangle^{2}}{\langle P_{hT}^{2} \rangle^{2}} \frac{e^{-P_{hT}^{2}/\langle P_{hT}^{2} \rangle_{BM}}{\pi \langle P_{hT}^{2} \rangle_{C} \langle P_{hT}^{2} \rangle_{BM}}, \\ F_{UU}^{\cos(2\phi_{h})}|_{BM} &= -eP_{hT}^{2} \sum_{q} e_{q}^{2} x_{bj} \frac{\Delta f_{q^{\dagger}/p}(x_{bj})}{M_{BM}} \frac{\Delta D_{h/q^{\dagger}}(z_{h})}{M_{C}} \frac{e^{-P_{hT}^{2}/\langle P_{hT}^{2} \rangle_{BM}}{\pi \langle P_{hT}^{2} \rangle_{BM}}, \\ \times \frac{z_{h} \langle k_{\perp}^{2} \rangle_{BM}^{2} \langle p_{\perp}^{2} \rangle_{C}^{2}}{\langle k_{\perp}^{2} \rangle \langle p_{\perp}^{2} \rangle_{C}}, \\ \end{array}$$

Review

Unpolarized \leftrightarrows Polarized Sea connection

Table 5

Flavor structure of the nucleon sea

Wen-Chen Chang **, Jen-Chieh Peng^b

³ Justitute of Physics, Academia Sinica, Taipei 11529, Taiwan ³ Department of Musics, University of Illinois at Urbana-Champaign Urbana, IL 63801, USA

- Various non-perturbative models of the nucleon have predictions for the polarization of the sea
- While $\overline{d}(x)/\overline{u}(x)$ was + for all 0 < x < 0.45, same models have predictions for: $\Delta u(x) - \Delta d(x)$ $\Delta \overline{u}(x) - \Delta \overline{d}(x)$
- Mapping out the polarized sea flavor contribution is timely and necessary since the valence, sea, gluons and non-perturbative mechanisms are all interconnected!

Model	I_{Δ} prediction	Ref.	
Meson cloud (π -meson)	0	[31,127]	
Meson cloud (p-meson)	$\simeq -$ 0.0007 to -0.027	[117]	
Meson cloud ($\pi - \rho$ interf.)	$= -6 \int_0^1 g^p(x) dx$	[118]	
Meson cloud (ρ and $\pi - \rho$ interf.)	$\simeq -0.004$ to -0.033	[119]	
Meson cloud (p-meson)	<0	[120]	
Meson cloud ($\pi - \sigma$ interf.)	20.12	[132]	
Pauli-blocking (bag-model)	20.09	[119]	
Pauli-blocking (ansatz)	≃0.3	[128]	
Pauli-blocking	$=\frac{5}{3}\int_{0}^{1}[\bar{d}(x)-\bar{u}(x)]dx\simeq 0.2$	[129]	
Chiral-quark soliton	0.31	[130]	
Chiral-quark soliton	$\simeq \int_0^1 2x^{0.12} [\bar{d}(x) - \bar{u}(x)] dx$	[131]	
Instanton	$=\frac{5}{3}\int_0^1 [\bar{d}(x) - \bar{u}(x)]dx \simeq 0.2$	[123]	
Statistical	$\simeq \int_0^1 [\bar{d}(x) - \bar{u}(x)] dx \simeq 0.12$	[41]	
Statistical	$> \int_{0}^{1} [\tilde{d}(x) - \tilde{u}(x)] dx > 0.12$	[126]	

from Arun Tadepalli

SIDIS Unpolarized Cross Section

In LO factorization scheme

л

$$\begin{aligned} \frac{d\sigma}{dx_{bj}dydz_hdP_{hT}^2d\phi_h} &= 2\pi \frac{\alpha^2}{x_{bj}yQ^2} \left(1 + \frac{\gamma^2}{2x_{bj}}\right) \times \\ &\times \bigg[c_1 F_{UU} + c_2 \cos(\phi_h) F_{UU}^{\cos(\phi_h)} + c_3 \cos(2\phi_h) F_{UU}^{\cos(2\phi_h)}\bigg], \end{aligned}$$

Use the following Gaussian parameterizations for the TMD PDF and TMD FF
Twist 2 effect

SIDIS Unpolarized Cross Section

In LO factorization scheme

л

$$\begin{aligned} \frac{d\sigma}{dx_{bj}dydz_hdP_{hT}^2d\phi_h} &= 2\pi \frac{\alpha^2}{x_{bj}yQ^2} \left(1 + \frac{\gamma^2}{2x_{bj}}\right) \times \\ &\times \left[c_1 F_{UU} + c_2 \cos(\phi_h) F_{UU}^{\cos(\phi_h)} + c_3 \cos(2\phi_h) F_{UU}^{\cos(2\phi_h)}\right],\end{aligned}$$

Twist-4 Cahn & twist-2 Boer-Mulders: $cos(2\phi_h)$ dependence

$$F_{UU}^{\cos(2\phi_h)} \approx F_{UU}^{\cos(2\phi_h)} \big|_{\text{Cahn}} + F_{UU}^{\cos(2\phi_h)} \big|_{\text{BM}}$$

• Boer-Mulders effect $\propto h^{\perp}_{1} \otimes H^{\perp}_{1}$

• Twist-4 Cahn effect could have similar size of contribution to $cos(2\phi_h)$ as Boer- Mulders [Phys. Rev. D. 81:114026 (2010) based on HERMES/COMPASS results]

Motivation

□ Lack of data on SIDIS unpolarized absolute cross sections

- Study both the shape and the normalization of the SIDIS cross sections
- Ascertain the validity of the factorization theorems
- Nuclear corrections: EMC effect, nuclear binding, Fermi motion, and off-shell effects
- o higher-twist effects on azimuthal angular modulations
- o TMD flavor dependence

SoLID Large Angle Detectors

A Precision Measurement of Inclusive g₂, d₂ with SoLID on a Transversely Polarized ³He Target at 8.8 and 11 GeV

$$d_2(Q^2) = 3\int_0^1 x^2 \left[g_2(x,Q^2) - g_2^{ww}(x,Q^2)\right] dx = \int_0^1 x^2 \left[2g_1(x,Q^2) + 3g_2(x,Q^2)\right] dx$$

Hall A/C Collaboration Meeting Ye Tian

Target Single Spin Asymmetry Measurements in the Inclusive Deep-Inelastic Reaction on Transversely Polarized Proton and Neutron (³He) Targets using the SoLID Spectrometer

 \blacktriangleright A_v projection of SoLID ³He large angle detector (LD)

- SoLID ³He running condition
 - 15uA e- beam (48 days at 11GeV and 21 days at 8.8GeV)
 - 40cm 10amg ³He target with window collimator
- Hall A data from *Phys. Rev. Lett. 113,* 022502 (2014) are at individual Q² and x bins, while SoLID LD projection are integral over all x bins
- The comparison shows stat error only. Hall A data has sys error similar to stat error and SoLID LD sys error is about 7%

Why SIDIS is Essential to Access the Polarized Sea Asymmetry

- Inclusive DIS xg1(x) measures
 it cannot separate valence from sea.
- ✓ SIDIS enables flavor separation by detecting hadrons (e.g. π +, π −) in the final state:
 - Tags the **flavor of the struck quark**.
 - Proton + neutron (via 3He) SIDIS \rightarrow separates Δu and Δd^{-} .
- Global fits (e.g. DSSV) depend heavily on SIDIS and RHIC data for resolving sea structure.

Precision SIDIS data are essential to constrain models and test the symmetry breaking in the polarized sea.