SBS GMn/nTPE Analysis Update

Eric Fuchey College of William & Mary (On behalf of the nTPE collaboration)

Hall A/C Summer Collaboration Meeting, June 18th 2025

Open Questions in Nucleon Structure Form Factors at High Q²

• Precise data sets up to and beyond $Q^2 = 10 \text{ GeV}^2 = \text{powerful insight on QCD}$

Vector Meson Dominance [arXiv:nucl-th/0609020 (2006)]
Constituent Quark Model [Phys. Rev. C77, 015202 (2008)]
Dyson Schwinger Equations (DSE)
[Phys. Rev. Lett. 111, 101803 (2013)]
DSE + quark-diquark
[Phys. Rev. C86, 015208 (2012)]
Generalized Partons Distributions
[Phys. Rev. D60, 094017 (1999)]

▲ z

• World Form Factors Datasets [arXiv:2212.11107 [hep-ph]]:

Derived Proton: Rosenbluth / polarization measurements discrepancies at large Q²

• World Form Factors Datasets [arXiv:2212.11107 [hep-ph]]:

□ Proton: Rosenbluth / polarization measurements discrepancies at large Q^2 □ Neutron: Scarce data beyond $Q^2 \sim 3-4$ GeV²

Super BigBite Spectrometer

Super BigBite Spectrometer: BigBite

- Detector package tilted 10% behind dipole magnet
- Function: Electron measurement
- Detector package:
 - GEMs:
 - ♦ 4 front layers 40 x 150 cm², 1 back layer 60 x 200 cm²
 - momentum trivector + vertex measurement
 - ♦ 1% momentum resolution, 1mr angular resolution;
 □ GRINCH:
 - C4F8 Cherenkov radiator
 - Cherenkov light readout by 510 PMTs
 - ♦ Electron ID ~98% Pion rejection
 - Calorimeter: (shower+preshower)
 - PreShower: 2x26 lead glass modules
 - Shower: 7x27 lead glass modules
 - ♦ Trigger
 - Electron ID/Pion rejection
 - **Hodoscope**:
 - ♦ 90 Scintillators 60 x 2.5 x2.5 cm³
 - scintillators readout on both ends
 - Precision Timing: 500 ps resolution

Preshower

GRINCH

Hodoscope

Shower

GEMs

BigBite

magnet

Super BigBite Spectrometer: HCal

• 12 x 24 iron/scintillator modules 15 x 15 * 90 cm³

• Function: Nucleon measurement

- □ Position resolution ~5.5cm
- □ Timing resolution (ADC only) ~1.5 ns
- □ Energy resolution ~50 %

Nucleon identification

GMn Measurement

• GMn: E12-09-019 (A. Camsonne, B. Quinn, B. Wojteskhowski)

 \square Measurement of G_{M}^{n} at five Q² values: 3, 4.5, 7.5, 10, 13.6 GeV²

 \square Durand technique: simultaneous *enlep* measurement on D₂

 \square Separation of p and n with SBS

 $\Box \sigma_{en} / \sigma_{ep}$ with reduced systematics (cancellation of Fermi momentum,...)

 \square knowledge of σ_{ep} provides $\sigma_{en} =>$ determination of G_M^n

GMn Measurement

• GMn: E12-09-019 (A. Camsonne, B. Quinn, B. Wojteskhowski)

$$\square R = \frac{N_{en+en}}{N_{ep+ep}}$$

$$\square R_{n/p} = \frac{\sigma_{en}}{\sigma_{ep}} = Rf_{corr} - N_{inel}$$

$$= \frac{\sigma_{Mott}(1 + \tau_p)(\sigma_T^n + \epsilon \sigma_L^n)}{\sigma_{Mott}(1 + \tau_n)(\sigma_T^p + \epsilon \sigma_L^p)} = \frac{(1 + \tau_p)(\tau_n(G_M^n)^2 + \epsilon(G_E^n)^2)}{(1 + \tau_n)(\tau_p(G_M^p)^2 + \epsilon(G_E^p)^2)}$$

$$\bullet f_{corr} = \frac{\eta_{en}(t)}{\eta_{ep}(t)} \times \frac{\eta_{RC}(v, Q2, ...)}{Radiative corrections (radiative corrections at vertex, energy loss, ...)}$$
Radiative corrections (radiative corrections at vertex, energy loss, ...)
neutron/proton detection efficiency
$$\bullet \sigma_{Mott} = \hbar c \alpha_{EM} \frac{1}{4E^2} \left(\frac{\cos \theta/2}{\sin \theta/2}\right)^2 \frac{E'}{E}$$

$$\bullet \tau_N = \frac{Q^2}{4M_N^2}$$

$$\bullet \epsilon = [1 + 2(1 + \tau) \tan^2(\theta/2)]^{-1}$$

GMn Measurement

• GMn: E12-09-019 (A. Camsonne, B. Quinn, B. Wojteskhowski)

$$\begin{array}{ll} \square & R = \frac{N_{en \rightarrow en}}{N_{ep \rightarrow ep}} \\ \square & R_{n/p} = \frac{\sigma_{en}}{\sigma_{ep}} = Rf_{corr} - N_{inel} \\ & = \frac{\sigma_{Mott}(1 + \tau_p)(\sigma_T^n + \epsilon \sigma_L^n)}{\sigma_{Mott}(1 + \tau_n)(\sigma_T^p + \epsilon \sigma_L^p)} = \frac{(1 + \tau_p)(\tau_n(G_M^n)^2 + \epsilon (G_E^n)^2)}{(1 + \tau_n)(\tau_p(G_M^p)^2 + \epsilon (G_E^p)^2)} \\ & = 1 \end{array}$$

$$\Box \quad \tau_n (G_M^n)^2 + \epsilon (G_E^n)^2 = R_{n/p} \left(\tau_p (G_M^p)^2 + \epsilon (G_E^p)^2 \right) \longrightarrow \text{From proton data}$$

$$\Box \quad (G_M^n)^2 = \frac{1}{\tau_n} \Big(R_{n/p} \Big(\tau_p (G_M^p)^2 + \epsilon (G_E^p)^2 \Big) - \epsilon (G_E^n)^2 - \delta_{2y} \Big)$$

From GEn fits

nTPE Measurement

• nTPE: E12-20-010 (E.F., S. Alsalmi, B. Wojteskhowski)

□ Rosenbluth/TPE measurement on the neutron, Q² = 4.5 GeV²

 \Box measurement of σ_{en}/σ_{ep} at two beam energies

 $\Box \sigma_{en} / \sigma_{ep}$ superratio dependent on proton and neutron Rosenbluth slopes

neutron Rosenbluth slope => neutron Rosenbluth slope;

DNTPE = Rosenbluth slope <=> polarization data discrepancy

• nTPE: E12-20-010 (E.F., S. Alsalmi, B. Wojteskhowski)

$$\square R = \frac{N_{en \to en}}{N_{ep \to ep}}$$

$$\square R_{n/p} = \frac{O_{en}}{O_{ep}} = Rf_{corr} - N_{inel} = \dots$$

$$\square R_{n/p}^{\epsilon_{1/2}} = \frac{O_T^n (1 + \epsilon_{1/2} S^n)}{O_T^p (1 + \epsilon_{1/2} S^p)} \rightarrow \text{From proton data}$$

$$\square A = \frac{R_{n/p}^{\epsilon_1}}{R_{n/p}^{\epsilon_2}} \approx B(S^p) \times (1 + S^n \Delta \epsilon)$$

$$\Rightarrow B = \frac{1 + \epsilon_2 S^p}{1 + \epsilon_1 S^p}$$

$$\square S^n = \frac{A - B}{B \Delta \epsilon}$$

$$\square nTPE = S^n - \frac{(G_E^n)^2}{\tau (G_M^n)^2} \rightarrow \text{GEN fits or GEN-RP measurement at}}{Q^2 = 4.5 \text{ GeV}^2 \text{ (when available)}}$$

06/18/2025

								1
	Kin	Q^2	E	<i>E</i> '	$\theta_{_{BB}}$	$\theta_{_{SBS}}$	3	
		(GeV/c) ²	(GeV)	(GeV)	(deg)	(deg)		
	SBS4	3.01	3.728	2.129	36.0	31.9	0.721	
	SBS7	10.0	7.906	2.588	40.9	15.9	0.492	
	SBS11	13.50	9.860	2.676	41.9	12.8	0.437	
	SBS14	7.52	5.965	1.965	47.2	17.3	0.456	
	SBS8	4.51	5.965	3.565	26.5	29.9	0.797	
	SBS9	4.50	4.015	1.618	49.0	22.5	0.512	
	L	1	/	1	1	1		

Elastic Selection

• Electron track and electron ID:

□ z_{vertex} < ± 8cm □ electron track with ≥ 3/5 hits □ E_{PS} > 0.2 □ *"Fiducial Cut": events with* projected *n* and *p* position within active HCal region (eliminates systematics from neutron/proton acceptance)

- Exclusivity cut:
 W² within elastic nucleon peak;
- Nucleon selection:

 $\Box E_{HCAL} > 0.1$ of HCAL active region; $\Box \text{ selection on } x_{HCAL} - x_{expect},$ $y_{HCAL} - y_{expect} < 3\sigma \text{ (spot cuts)}$ $\Box |t_{HCAL} - t_{BBCAL}| < 3\sigma$

MC/Data Comparison

- Monte Carlo quasi elastic *enlep including radiative corrections* (SIMC): \square MC: kinematic "migration" due to radiative corrections, energy losses, etc \square MC cross section models known, but inexact \square Comparison with data counts: correction of MC correction models \square => provides correction term: $R_{n/p} = \frac{\sigma_{en}}{\sigma_{ep}} = \frac{(N_{en \rightarrow en})_{meas}}{(N_{en \rightarrow en})_{meas}} f_{corr}$
 - \Box Example: MC/data yield comparison, SBS8 (high ε):

Monte Carlo Improvements

- Multiple Monte Carlo improvements:
 - D Small Geant4 geometry fixes:
 - Preshower blocks geometry (featured)
 - Scattering chamber window clearance;
 - D Adjustement of digitization gains for HCal,

shower, preshower (featured)

06/18/2025

Preshower block geometry: before \rightarrow after

Nucleon expected position from reconstructed electron: before → after

Selection Optimization

• *n/p* stability over selection cuts:

 $\square W^{2};$ $\square E_{PS}, E_{SH}, E_{HCAL};$ $\square t_{HCAL} - t_{Shower};$ $\square \Delta x, \Delta y, \text{ fiducial cuts};$

Systematic uncertainties: Inelastic contamination

Latest improvements on estimation of inelastic contamination:
 Inelastic Monte Carlo combined with out-of-time events

Systematic uncertainties: Inelastic contamination

- Latest improvements on estimation of inelastic contamination:

 Inelastic Monte Carlo combined with out-of-time events
 neutron/proton cross section ratio obtained with newest function compared with:
 - ◆ 2nd and 4th order polynomials, gaussian to fit inelastic background;

 $\bullet \Delta y$ side-band selection

• Method to correct for HCal efficiency non-uniformity:

D Reweight MC events with HCal non-uniformity map;

HCAL Non-Uniformity Corrections

Reweight MC events with HCal non-uniformity map:

 Δ Analysis of all combined SBS8 LH2 settings for map efficiency:
 Δ Neutron efficiency drop comparable to proton;
 Δ Correction modifies σ_{en}/σ_{ep} by ~0.2 % (SBS8) and ~0.5 % (SBS9);
 Δ Other sources of systematics:

- Lack of absolute neutron detection efficiency measurement;
- ♦ Absolute proton detection efficiency uncertainty larger at high Q²;

Systematic uncertainties: Radiative corrections

• Radiative corrections (analysis credit: P. Datta, LBNL):

□ SIMC events with the following configurations for radiative effects:

- ♦ (1) No radiative corrections i.e. none of the tails are radiated
- \bullet (2) One tail = 0 => All (e, e', and p) tails are radiated
- (3) One tail = -3 => All but p tails are radiated

 \square SIMC events processed through g4sbs \rightarrow libsbsdig \rightarrow SBS-offline;

Properly weighted Dx distribution for all types of events with the same selection
 Extract individual yields and then quantify the correction

22

Final state interactions calculated by M. Sargsian:
 □ calculations of final state charge exchange *ep* → *en* and *en* → *ep* on deuterium

 \square Since D is symmetric, $ep \rightarrow en \equiv en \rightarrow ep$:

- ratio $R_{n/p}$ basically not affected
- uncertainty on ratio $R_{n/p}$ extremely small

Preliminary systematic uncertainties

• Systematics analysis credit: P. Datta (LBNL);

06/18

 $\hfill\square$ Improvement can be achieved for radiative corrections and nucleon detection efficiency

Table 2: Estimated contributions (in percent) to systematic error on R and $\frac{G_M^n}{\mu_n G_D}$.

	Error Sources	$Q^2 (\epsilon)$					
	Entor Sources	3(0.72)	4.5(0.51)	7.4(0.46)	9.9~(0.50)	13.5(0.41)	
$\Delta(R)_{sys}$.	Inelastic Cont.	0.33	0.75	0.84	0.75	2.67	
	Nucleon Det. Effi.	2.00	2.01	2.01	2.02	2.02	
	Radiative Corr.	2.31	3.32	3.77	3.87	5.47	
	Cut Stability	0.16	0.15	0.40	0.67	0.60	
	\mathbf{FSI}	0.04	0.01	0.02	0.02	0.03	
	Total	3.08	3.95	4.37	4.48	6.44	
$\Delta(rac{G_M^n}{\mu_n G_D})_{sys}$	Inelastic Cont.	0.17	0.38	0.42	0.37	1.34	
	Nucleon Det. Effi.	1.00	1.00	1.01	1.01	1.01	
	Radiative Corr.	1.16	1.66	1.88	1.94	2.73	
	Cut Stability	0.03	0.07	0.20	0.33	0.30	
	\mathbf{FSI}	0.02	0.00	0.01	0.01	0.01	
	σ^p_{Red}	0.82	0.92	1.35	1.52	1.33	
	G_E^n	0.55	0.65	0.62	0.66	0.55	
	Total	1.83	2.27	2.64	2.79	3.53	

GMN Preliminary Results

• Shown at the <u>APS 2025 SBS mini-symposium</u> by P. Datta (LBNL)

Flavor separation

• Shown at the <u>APS 2025 SBS mini-symposium</u> by P. Datta (LBNL)

NTPE Preliminary Results

First estimation of the neutron Rosenbluth slope (analysis credit E. Wertz):

 μ_n G_Eⁿ/G_Mⁿ calculated from Rosenbluth slope without accounting for TPE;
 Other G_Eⁿ measurements and projections are polarization data;
 Measured Rosenbluth slope hints for the existence of TPE
 Plan: refine systematic uncertainties.

[E. Wertz, A Measurement of the Neutron Electromagnetic Form Factor Ratio from a Rosenbluth Technique with Simultaneous Detection of Neutrons and Protons, Ph.D Thesis, William & Mary (July 2025).]

06/18/2025

27

Summary

- GMN preliminary results presented at APS 2025
- NTPE preliminary results presented here for the first time!

• Monte Carlo:

Digitization gain adjusments done for all SBS kinematics;
 Monte Carlo pass 2 generated with a few important fixes;

• Systematics:

Dupdate on inelastic subtraction;

D HCal systematics uncertainties:

Non-uniformity estimated to 0.5% at most;

Remaining uncertainties from lack of absolute neutron detection efficiency;

Preliminary estimation of radiative corrections;

Ducertainty from Final State Interactions extremely small;

• Next steps:

third pass of calibration for optimization of HCal timing;
 preparation of publication for PRL;

Students status

- John, Sebastian, Nathaniel, Anu, Provakar, Maria already graduated
- Zeke to graduate soon!
- Anu, Provakar, Nathaniel continue analysis as post-docs;
- Not all the work that has been put in these results can be presented!
- Massive credit to all students and everyone involved!

Back up

Open Questions in Nucleon Structure Form Factors

Form factors = charge spatial distribution inside the nucleon

- Measured by *elastic electron nucleon scattering*;
- linked to proton size [R. Hofstadter, R.W. McAllister, Phys. Rev. 98, 217 (1955)]
- Proton radius puzzle [R. Pohl, A. Antognini, F. Nez, et al. Nature 466] (*not* the focus of this talk!)
- Tackled by FF measurements at *low* Q²: MUSE @ PSI, PRad @ Jefferson Lab, ...;

[H. Gao, M. Vanderhaeghen Rev. Mod. Phys. 94, 015002]

HCAL Non-Uniformity Corrections

Reweight MC events with HCal non-uniformity map:
 Analysis of all combined SBS8 LH2 settings for map efficiency:

□ SBS8/SBS9 Stable ratio over HCal position;

 \square Correction modifies $s_{_{en}}/s_{_{ep}}$ by ~0.2 % (SBS8) and ~0.5 % (SBS9);

D TODO:

- understand neutron response for systematic uncertainty estimation;
- Quantitatively evaluate uncertainty correlation between SBS8 and SBS9

• G4SBS geometry bugs fixes:

Dimensions of PS block
 (8.5 mm) not matched with
 block center-to-center
 distance (9mm)
 => "ribs" in X_{expect} Vs Y_{expect}

D PS block material density out-of-date

 Scattering chamber right beam window vertical aperture too small
 HCAL MC efficiency degraded in a fraction of acceptance;

Monte-Carlo Fixes: Digitization

• Digitization parameters for BBCal readjusted to fit the data better (e.g. SBS8)

Digitization gain adjustments: BBPS, BBSH

• Link to tables for all GMN kinematics: [Share point], [spreadsheet on wiki]

06/18/2025

Digitization gain adjustments: HCal

HCal Response

New	New gains		
Kin	HCal		
4	9.93e5		
7	1.04e6		
11	1.03e6		
14	1.04e6		
8	1.04e6		
9	1.10e6		

06/18/2025

Digitization gain adjustments: BBPS, BBSH

Link to tables for all GMN kinematics: [Share point], [spreadsheet on wiki]

μ: response peak; **σ**: response width; **_H**: LH2; **_D**: LD2; **_d**: data; **_s**: simulation

Digitization gain adjustments: BBPS, BBSH

New gains				
Kin	PS	SH		
4	1.68e5	8.34e5		
7	1.78e5	8.29e5		
11	1.72e5	8.32e5		
14	1.65e5	8.69e5		
8	1.87e5	8.11e5		
9	1.63e5	8.66e5		