The GEp-5 Experiment

Measuring the Proton Electric Form Factor in Hall A at

Don Jones for the GEp collaboration Hall A Summer Collaboration Meeting June 2025

GEp-5 experiment overview

GEp Spokespersons: E.Cisbani, M.Jones, N.Liyanage, L.Pentchev, A.Puckett, B.Wojtsekhowski

- GEp currently running in Hall A until late August will measure the ratio of the proton Sachs FFs G_E^p / G_M^p at high Q^2
- Designed to run at 50uA on a 30cm LH2 target
- Hadron arm includes SBS dipole magnet, proton polarimeter and HCal
- Electron arm consists of ECal and CDet

Sachs Form Factors

The nucleon's "shape" described by electric and magnetic form factors G_E^p and G_M^p (proton) and G_E^n and G_M^n (neutron)

- momentum space representations of charge and magnetization distributions in the nucleon.
- Intuitive interpretation is easiest in the Breit frame where the Fourier transforms of GE and GM are spatial distributions of charge and current
 - this interpretation prohibited in rest frame due to recoil

$$G_E = \int \rho(\vec{r}) e^{i\vec{q}\cdot\vec{r}} d^3\vec{r} \qquad G_M = \int \mu(\vec{r}) e^{i\vec{q}\cdot\vec{r}} d^3\vec{r}$$

Measuring Form Factors

Rosenbluth separation

- Leverages linearity of cross section in $\varepsilon = [1 + 2(1 + \tau) \tan \frac{\theta}{2}]^{-1}$

$$\sigma_R = \left(\frac{d\sigma}{d\Omega}\right)_{exp} / \left(\frac{d\sigma}{d\Omega}\right)_M \frac{\epsilon(1+\tau)}{\tau} = \frac{\epsilon}{\tau} G_E^2 + G_M^2$$

- Measure cross section at fixed Q^2 but varying ε (scattering angle) and G_M^2 is given by the intercept and slope provides G_E^2

Polarization transfer

 Proposed by Akhiezer et al. in 1958, it measures polarization transferred to hadron from electron: sensitive to the ratio of the form factors

$$\frac{G_E}{G_M} = -\frac{P_t}{P_\ell} \sqrt{\frac{\tau(1+\epsilon)}{2\epsilon}} =$$

- Measure ratio of hadron polarization along (Pl) and transverse (Pt) to momentum transfer
- Many systematics cancel in the ratio

Issues with Rosenbluth Separation Technique

Also large \mathcal{E} -dependent radiative corrections required

GEP5 Experiment

5

Motivation for measuring form factors

Comparing to model predictions

- Will VMD-models (Lomon,Bjiker) describe all 4 nucleon FFs well at higher Q^2 ?
- Check pQCD prediction of logarithmic scaling of F_1/F_2 at intermediate Q^2 (Belitsky, Ji, Yuan)
- Constrain GPDs via fundamental relationship of first moments to FFs

$$\int_{-1}^{+1} dx \, H^q(x,\xi,Q^2) \,=\, F_1^q(Q^2)$$
$$\int_{-1}^{+1} dx \, E^q(x,\xi,Q^2) \,=\, F_2^q(Q^2)$$

 Provide data for verifying lattice QCD predictions as they mature

GEP historical measurements at JLab with polarization transfer

- GEP-II ran in 2000 in Hall A with one HRS and a $3.5\ m^2$ lead glass calorimeter up to 5.6 GeV² further confirming the disagreement
- GEP-III ran in 2007-08 in Hall C using the HMS and a new 3.1 m^2 lead glass calorimeter
- GEP-5 currently taking data at $Q^2 = 11 GeV^2$

Proposed error bars

Focal Plane Polarimeter

Camera image of GEP in Hall A beam right

Camera image of GEP in Hall A beam left

HCAL design

Each module is 15 cm x 15 cm x ~1 m
Plus light guide and PMT at end
40 layers scintillators + iron per module

 $\circ \quad \text{Staggered to increase light output} \\$

Jefferson Lab

HCAL during GEp

• Plots from highest kinematics runs (5th pass beam) showing fADC scalers and **CLUSTER** heatmap HCAL CLUSTER HEATMAP

														cks	25													
														plo														
										MAX SING	GLE BLC)CK = 845	5856 Hz	, AL													=	10 ⁴
				LI/		00.00		(11-)		Total: 2	8821 820	kH7		£	20				-									
× ~ 1				п	AL FA	DC 50	ALERS) (ПZ)		TUtal. J	0021.020	NI IZ	=	of														
0 24 0 22	38037.42	35447.27	70122.25	167400.83	136238.67	1/3329.00	104552 17	161014.25	192200 22	102220 50	71567.02	126212.67	Ξ	Ň													_	
<u>م</u> 23	38928 33	63173.17	53134.33	126827.92	77616.58	136218.25	177400.00	181863.50	228904 58	481892.42	100799.50	264500.58	-	ы.														
b 21	52052.70	41516.84	154113.20	204804.88	135668.32	185261.36	75228.35	173931.93	246024.38	783084.97	222169.26	156086.63		10 ⁵	15				_									2
0 20	37993.65	35921.19	54060.17	101734.62	85259.92	159329.63	212848.79	212441.19	200513.18	151488.10	109158.14	201703.94	Ξ														=	10°
te 19	35833.73	30896.01	54614.56	115066.69	81057.17	113996.34	173410.74	158725.55	349502.91	159532.01	104041.08	192416.26		104											_			
	20961.89	46206.24	59369.63	152953.31	153919.14	175208.57	202740.08	182204.85	284490.46	246870.79	107984.35	204767.93		10*														
0 ₁₇	44563.44	76706.38	57846.74	138645.52	29653.81	257926.19	85901.61	206580.67	304821.72	203710.49	141323.30	452489.71	=														-	
8 16	25783.36	52711.87	59343.50	137145.27	119927.60	124298.28	206998.34	216673.31	196640.22	116904.97	134965.05	471904.91		103	10													
œ ₁₅	55846.77	22189.02	48094.04	111738.31	130313.01	178279.64	150469.35	153240.58	227092.59	845856.03	116622.77	300315.23	E	10														
14	51893.51	44761.91	86478.89	172335.23	156916.56	165602.83	178360.28	187758.81	260341.25	181718.20	128427.38	216257.31	=															10 ²
13	176121.80	118452.65	88137.84	116508.35	9391.71	96178.92	65370.12	166147.41	229251.35	112144.66	106787.93	131641.08		10 ²													-	
12	26215.59	32249.04	61651.37	133249.93	94512.07	120265.88	171985.21	180306.16	211170.71	153533.84	157587.96	132980.55		10	5												-	
- 11	23282.41	26208.68	157572.32	141948.18	160152.32	150344.52	195051.26	220217.14	259958.45	215824.33	454066.44	586941.89			5								إلى					
10	102965.91	31342.05	70447.57	124196.59	138020.14	174116.42	158561.36	224354.23	276059.42	148113.20	170916.37	142189.51		10			_	_										
9	32390.26	39559.81	51993.54	131873.26	145597.86	183536.17	149163.74	175166.96	305579.67	158746.19	128711.40	178909.10	Ξ	10								_						
8	28615.59	31767.30	51339.03	106499.67	134839.39	145092.15	169258.34	146558.28	230693.09	122994.84	121832.45	133340.06					-1-1		1 1				10		10		<u>}</u>	
7	257921.11	120619.36	180427.82	214213.56	97814.40	262809.24	151218.97	202538.03	203329.85	146031.18	113179.31	489480.08		1		2		4		6	8		Colu	mn of I		lacka		
6	16316.09	21523.86	45351.76	144714.67	83414.98	129184.33	207626.55	221351.23	244206.07	206423.13	106130.93	254747.02	Ξ										Colur	nn or r		NOCKS		
5	17463.25	20228.57	48280.94	90753.54	121616.34	166872.32	150136.56	166404.30	203083.36	120138.31	102294.26	98191.46	_															
4	15565.71	23971.12	38178.81	47537.06	63783.99	90357.24	112645.88	105398.53	146811.76	91123.36	76424.02	189387.63		10 ⁻¹														
2	13000.32	18711 60	23326 77	35201.53	49703.00	63350.10	90927.32	55226.28	54567 30	40602.52	52364.95	92309.22	E															
2	10182 61	15999 67	15582 30	31158.63	27071 57	43606.85	57708.04	57253.90	69605.99	65255.62	48215.95	62615.28	2-2															
	1	2	3	4	5	6	7	8	9	C.10	n of Boto	otor Pleak		10 ⁻²														
(Note:Click on bins to get Bin-info) 2025/6/10 16:20:08																												

GEP5 Experiment

on Lab

Jeff

HCAL during GEp

HCAL during GEp

Cluster Energy and timing for HCAL blocks

Cluster Energy and positions in HCAL (x: vertical, y: horizontal distance)

GEM tracker status

Overall performance of SBS Front & Back Trackers

- The SBS GEM tracking system includes:
 - o Forty-six (46) GEM modules
 - Front trackers: 6 GEM layers of 40 x 150 cm
 and 2 GEM layers of 60 x 240 cm
 - Back trackers: 8 GEM layers of 60 X 200 cm

GEM tracker status

Overall performance of SBS Front & Back Trackers

- The SBS GEM tracking system includes:
 - o Forty-six (46) GEM modules
 - Front trackers: 6 GEM layers of 40 x 150 cm
 and 2 GEM layers of 60 x 240 cm
 - O Back trackers: 8 GEM layers of 60 X 200 cm

GEM tracker status

Overall performance of SBS Front & Back Trackers

- The SBS GEM tracking system includes:
 - o Forty-six (46) GEM modules
 - Front trackers: 6 GEM layers of 40 x 150 cm
 and 2 GEM layers of 60 x 240 cm
 - o Back trackers: 8 GEM layers of 60 X 200 cm
- The SBS GEMs are operating at rate much higher than any other experiments
 - o Both front and back trackers are performing well
 - A few dead areas caused by dead high voltage sectors and faulty electronics
 - Since the beginning of the GEp, only about 7 sectors out of 1560 sectors were lost

Hit map on 8 GEM layers of the front tracker

erson Lab

GEM performance

Operating GEMs in High Rate Environment

- High rate conditions lead to the drop
 voltage on GEM protective resistors
 →Lower the field strength in GEM holes
 →Lower GEM gain
- Solution: Applied HV correction to compensate the voltage drop on protective resistors →Restore the field strength in GEM holes →restore detector gain
- With HV corrections, the RO current is near linear to the beam current

→indicating no loss in GEM gain GEP5 Experiment

The slope of the plot is proportional to the gain

L0 without the Voltage Correction

Detector Occupancy in High Rate Environment

- GEM modules with shorter readout strips and improved robustness are used in the front tracker
- At 15uA, the raw occupancy on the front tracker reaches between 30 to 50%
- This high occupancy imposes challenge to the tracking analysis
 - O High detector occupancy → Large
 number of 2D hit combinations
 →Increase difficulty in track finding

The GEMs are handling unprecedented rates very well.
The total integrated rates and occupancies are an order of magnitude than in any other experiment ever in the world

Alignment of GEM Trackers

- Because of the high occupancy, the alignment has been very challenging
- During the early stage of the experiment, several repairs required sliding out some layers in the back tracker so alignment must be redone

- Despite all the challenges, Andrew and Anu were able to align both trackers
- Tracking results from the 1uA data during Kin1 suggest the spatial resolution is \sim 90 μ m

ECal design

- 1656 lead glass crystals
- Crystals heated to continuously anneal from radiation damage:
 - 210 °C (front) to 180°C (back)
 - Controls and monitoring software developed by DSG require little oversight: alarms monitor temperatures and hardware/software activity while process controllers turn off heaters if unsafe conditions detected

ECal design

- 1656 lead glass crystals
- Purpose of ECal is to reduce trigger rate with tight conditions based on position and energy
- Crystals heated to continuously anneal from radiation damage:
 - 210 °C (front) to 180°C (back)
 - Controls and monitoring software developed by DSG require little oversight: alarms monitor temperatures and hardware/software activity while process controllers turn off heaters if unsafe conditions detected

ECal design

- 1656 lead glass crystals
- Purpose of ECal is to reduce trigger rate with tight conditions based on position and energy
- Crystals heated to continuously anneal from radiation damage:
 - 210 °C (front) to 180°C (back)
 - Controls and monitoring software developed by DSG require little oversight: alarms monitor temperatures and hardware/software activity while process controllers turn off heaters if unsafe conditions detected
- Rear enclosure cooled with 3 16000BTU air conditioners to keep it below 50 °C

ECal timing

Started with the relative time difference among all the ECal channels with cosmic data, and then improved it with beam data.

Accommodate for the time difference between ECal and HCal in order to line up their timing windows for coincidence.

Coincidence matching is now implemented between ECal and HCal to reduce trigger rate.

LIC AL	ADC Clue	firms to be	H naak na	t around QE of	e multimask	for COIN tria	call BC and	start new pup
- HOML	ALC GIUS	01110 >>	п реак по	r mong ao o	r munipoak	TOP COTINE ING.	call no ano	SIGHTL HIGHY FUIT

GEP5 Experiment

Starting estimate for gain matching used endpoint of ep inelastic spectrum to find approximate HV settings

After collecting enough elastic events, re-calibrated ECal and obtain more accurate gain factors.

Several rounds of elastic calibrations have allowed for us to iterate upon the calibration in attempt to maximize the trigger efficiency.

4500 ECAL row 60 4000 3500 50 3000 40 2500 2000 30 1500 20 1000 500 10 25 5 15 20 Energy spectrum (GeV) vs ECal blocks. 1.5 0.5

Calibration with electron E/p from elastic events in Kin 1 (3 pass), we currently achieve an energy resolution of ~11.5%, we hope to get closer to the expected ~5-6% resolution with further iterations of elastic calibration

ECal-HCal coincidence trigger

Geant4 simulations of elastic ep scattering determines correlation between logic groups of the electron and hadron calorimeters.

Insert lookup table from simulation into the trigger logic between the calorimeters to determine when a good trigger is formed, which we refer to as the coincidence matching trigger.

Coinc trigger reduces rate by ~10x relative to HCal AND ECal

At cluster energy thresholds of HCal = 20% and ECal=65% of the expected elastic energy, trigger rates ~2kHz and DAQ livetime is consistently around 100%, although we have yet exceeded 22uA.

HVTP

28

HCal vs ECal trigger hit plots from real data shows the expected positive linear correlation between hits in the two calorimeters, with the vertical correlation being much stronger than the horizontal

26.76

92.49

16.02

CDet Readout/Detector Performance

- Latency = 3216 ns, Window = 52 ns
- Clear peak in timing spectra established at low current running
- Using trigger reference signal in additional vfTDC module – reasonable vtTDC timing calibration achieved; resolution ~10's of ps (still work in progress)
- Updated vfTDC firmware to use block readout to solve deadtime/livetime issues
- Reasonable HV/threshold values determined with HV scan at lower currents (still a few "missing" bars at upper edge of second layer of CDet, as well as a few "hot" bars that have HV disabled)

ECal Position Correlations

- Observe clear correlation between CDet X-position of hit paddle and determined ECal X-position of best cluster
- Signal-to-noise ratio ~0.15 per layer after all timing and multiplicity cuts applied
- At 20uA on LH2, approximately 800 raw CDet TDC hits per event; filtering implemented in SBSCDet class to use LE timing and Time-Over-Threshold cuts -> reduction to ~30 TDC hits per event.
- Working in progress -> identify CDet "clusters" based on hits in adjacent paddles.

We are running in a new regime

- GEMs have not been run at these levels before
- For a short period the experiment was generating 2.4GB/s at 22uA:
 - 2x what we proposed
 - Temporarily had to pause data taking and then revert to 15uA because Computing couldn't write it to tape fast enough
 - With higher trigger thresholds and improved GEM parameters we were able to reduce this by 2x.
 - Firmware upgrade being developed for GEM region of interest readout which is expected to further reduce data generation by 3x
- Recall that we want to get to 50uA but that depends on well calibrated detectors with tight trigger conditions...
- But to get calibration data (very rare ep elastic events) you need fairly well calibrated detectors
 or very loose cuts and lots of computing power
- 10 seconds of data (20 GB file) takes the farm almost 24 hours to analyze/decode. Fortunately, you can do thousands in parallel.
- We are generating data locally so fast that we cannot complete track analysis before the local copies disappear forcing all tracking analysis to be on the batch farm.

- Left: FPP azimuthal angle distribution passing all exclusivity and other cuts; for helicity sum and individual helicity states—large instrumental asymmetry due to nonuniform acceptance/efficiency
- Right: Helicity asymmetry: difference/sum ratio
- Asymmetry amplitude and relative sign/magnitude of sine and cosine asymmetries are consistent with expectations

Conclusion

- The GEp experiment is currently running in Hall A under challenging conditions that push the boundaries on several fronts.
- We are currently taking data at our highest Q-squared point at $Q^2=11.1$ GeV²
- The successes and challenges of this experiment will inform future experiments especially those with high rate tracking requirements.
- This has been a huge effort with so many individuals and institutions involved. I would like to acknowledge this great group!

Increasing difficulty with each iteration

Form factor $\propto Q^{-4}$

Cross section $\propto E^2/Q^4 \times Q^{-8}$

Figure-of-Merit $\epsilon A_{_{Y}}^2 \times \sigma \times \Omega$

$\propto E^2/Q^{16}$

Need large statistics, max luminosity and solid angle

Max luminosity -> large background Large solid angle -> small bend -> huge background

Critical to this experiment is the maturing technology of high rate tracking with GEMS

 Q^2 increases from 8.5 to 11.1 GeV² but higher beam energy 10.7 vs. 6 GeV => a factor of 5-6 of the FOM loss, but the SBS larger solid angle helps.

3