High precision study of wide variety of light hypernuclei via decay pion spectroscopy

The University of Tokyo

Sho Nagao

on behalf of JLab hypernuclear collaboration

2025 Summer Hall A/C Collaboration Meeting

Hypernucleus

"strangeness" many-body system at low-energy limit

Hypernuclear Chart (S=-1, up to p-shell)

NOTE: B_A from hypernuclei database [https://hypernuclei.kph.uni-mainz.de/]

Precise Measurement of A Binding Energy

Study of NN and BB interaction

$$B_{\Lambda} = M_{core} + M_{\Lambda} - M_{HYP}$$

Core	Λ	Hypernucleus
Mass	Mass	Mass

High-resolution spectroscopy available

Weakly interacting Λ and N $\rightarrow \tau(g.s) \sim 200$ ps, $\Gamma(e.x \mbox{ above Sn}) < 100 \mbox{ keV}$

Good probe for AN interaction / (Hyper)nuclear structure

Mass, Isospin dependence etc. provide important information about effective $\Lambda N/\Lambda NN$ interaction

Light hypernuclei that can be applied for precise calculations are useful probes thanks to the recent progress of theories

Possible to approach changes of nuclear structure and deformation using Λ as a probe

Determination of Lambda binding energy

June 17 - 18, 2025 2025 Summer Hall A/C Collaboration Meeting (S.Nagao, U-Tokyo, snagao@jlab.org)

Hypertriton (Z=1, n=1, L=1 system)

- Lightest system with nucleons and Lambda
- $J^{P} = 1/2^{+}$
- T = 0
- Lambda binding energy
 - $B_{\Lambda} = 130 \pm 50(\text{stat.}) \text{ keV}$ [M. Juric et al., NPB52(1973)1.] Loosely bound system

Lambda halo nucleus

• Mesonic Weak Decay (MWD) dominant

Similar lifetime to free-Lambda (263.4 ps) ??

Hypertriton (Z=1, n=1, L=1 system)

Decay Pion Spectroscopy Technique

Hypernuclear Mass Spectroscopy with FWHM ~ 100 keV Stat. Error < 10 keV Systematic ~ 10 keV

Principle

➢ Measurement of mono. decay pion from hypernuclei stopped in the target emitting pion in two-body decay (e.g. ⁴_ΛH → ⁴He + π⁻) Hyp. ID from known (or expected) B_Λ

Tagging K⁺ for background suppression from non-strangeness production

Possible hypernuclei & Expected Pion Momenta

Example, ${}^4_{\Lambda}H \rightarrow {}^4He$ + $\pi -$					
$M(^{A}_{\Lambda}Z) = $	$M(^{A}(Z$	$(+1))^2 + p_\pi^2 + \sqrt{M_\pi^2}$	$\frac{1}{2} + p_{\pi}^2$		
	Μ(α)	= 3727.3794118(11)	MeV/c ²		
	M(π)	= 139.57039(18)	MeV/c ²		
	p(π)	= 133.03(6)	MeV/c		
	M(⁴ _∧ H)	= 3922.56(4)	MeV/c ²		

Specific decay pion momentum each hypernucleus

Well known daughter particle masses

Precise pion momentum \rightarrow Precise hypernuclear ground-state mass

Hyper-fragment candidates from ¹²C target

Hypernuclei	Decay mode	p_{π^-} (MeV/c)	comments
$\frac{3}{\Lambda}$ H	$^{3}\text{He} + \pi^{-}$	114.37	
${}^{4}_{\Lambda}H$	$^{4}\text{He} + \pi^{-}$	133.03	
$\frac{4}{\Lambda}$ He	$^{4}\text{Li} + \pi^{-}$	98.17	Impossible 2-body decay
$\frac{5}{10}$ He	$^{5}\text{Li} + \pi^{-}$	99.26	Impossible 2-body decay
⁷ сн	${}^{6}\text{He} + \pi^{-}$	135.27	
⁶ He	${}^{6}\text{Li} + \pi^{-}$	108.48	
<u> </u>	$^{6}\text{Be} + \pi^{-}$	-	No B_{Λ} data, above Sp
⁷ _A He	$^{7}\text{Li} + \pi^{-}$	115.10	
⁷ Li	$^{7}\text{Be} + \pi^{-}$	108.11	
$-\frac{7}{\Lambda}$ Be	$^{7}C + \pi^{-}$	95.90	Impossible 2-body decay
⁸ He	$^{8}\text{Li} + \pi^{-}$	116.47	
⁸ Li	${}^{8}\text{Be} + \pi^{-}$	124.20	
$^{8}_{\Lambda}$ Be	$^{8}\mathrm{B} + \pi^{-}$	97.19	No ⁸ B(g.s) decay
^g Li	${}^{9}\text{Be} + \pi^{-}$	121.31	
$\frac{9}{\Lambda}$ Be	${}^{9}\text{B} + \pi^{-}$	96.98	
⁶ B	${}^{9}C + \pi^{-}$	96.82	
¹⁰ Li	${}^{10}\text{Be} + \pi^{-}$	-	No B_{Λ} data
fðBe	$^{10}B + \pi^{-}$	104.41	
$^{10}_{\Lambda}B$	$^{10}C + \pi^{-}$	100.49	
$^{11}_{\Lambda}$ B	$^{11}C + \pi^{-}$	86.54	
$^{12}_{\Lambda}B$	$^{12}C + \pi^{-}$	115.87	

4 _AH peak in DPS (MAMI)

1.8

2.2

B₄ (MeV)

2

2.4

2.6

(Stat Error only)

Latest results of hypertriton data (MAMI)

Subsequence exp. was done in 2022

Different target (Be \rightarrow Li 2.7 g/cm²) Total Charge = 1.074 C (1 μ A x 12 days)

Finding two peaks on pion spectrum

 ${}^{4}_{\Lambda}H \rightarrow {}^{4}He + \pi^{-}$ (~133 MeV/c) ${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-}$ (~114 MeV/c) Reliable peak resolution FWHM ~ 100 keV/c Statistical error ~ 10 keV/c Pion Yield: ${}^{4}_{\Lambda}H : {}^{3}_{\Lambda}H = 3 : 1$

Ongoing calibration

Evaluating absolute momentum and linearity with e-N scattering data

e⁻ beam measurement which is newly developed "undulator radiation interferometry" method Expected accuracy $\delta B_{\Lambda} \sim a$ few tens keV

NOTE: Momentum calibration result is NOT applied

Beyond s-shell hypernuclei

Charge Symmetry on p-shell

Σ mixing effect

Particularly essential effect on neutron-rich hypernuclei

Super-heavy Hydrogen, Helium

Limit of nuclear existence, coupling to heavy hydrogen, helium, 4n-state in NN sector

⇒ Much better statistics is essential !

110

Pion momentum in SpekC (MeV/c)

150

145

Hypernuclear project at Jefferson Lab Hall-C

s-, p-shell hypernuclei with Decay Pion Spectroscopy E12-15-008A / E12-20-013A

High-resolution spectroscopy of light hypernuclei with the decay pion spectroscopy

⁶Li, ⁹Be, ¹¹B(e,e'K⁺)⁶ $_{\Lambda}$ He, ⁹ $_{\Lambda}$ Li, ¹¹ $_{\Lambda}$ Be E12-24-004

Study of charge symmetry breaking in p-shell hypernuclei

²⁷Al(e,e'K⁺)²⁷[/]Mg

Study of a triaxially deformed nucleus using a Lambda particle as a probe

^{40, 48}Ca(e,e'K⁺)^{40, 48}[^]K

E12-15-008 / E12-24-013

E12-20-013 / E12-24-003

E12-24-011

An isospin dependence study of the ΛN interaction through the high precision spectroscopy of Λ -hypernuclei with electron beam

²⁰⁸Pb(e,e'K⁺)²⁰⁸,Tl

Studying Λ interactions in nuclear matter with the ²⁰⁸Pb(e,e'K⁺)²⁰⁸ Tl reaction

>1 year run

Goal of DPS experiment @JLab

> New Determination of B_{Λ} ($\delta B_{\Lambda} \sim 10$ keV) for several s- p-shell hypernuclei

Experimental challenge to heavier sd-shell hypernuclei

Lifetime Measurement

Spin-Parity Assignment

New Experiment at Jefferson Lab.

Decay Pion Spectrometer "Enge"

Туре	Hardware spectrometer
Central Momentum	~ 110 MeV/c
Momentum bite	+/- 30%
Dispersion	1.53 cm/(MeV/c)
Momentum Resolution	10 ⁻³ (FWHM)
Solid Angle	4 msr

$\Delta p/p \sim 10^{-3}$ momentum resolution

Peak separation, Better S/N Measurement from position info. at focal-plane Angular information for target reconstruction **A few 10 keV/c momentum calibration**

With alpha-sources (~ 100 MeV/c/q) @target

Detection of well-known momenta alpha-particles at focalplane in vacuum

σ ~100 ps target time reconstruction

Suppression of accidental coincidence background Particle identification (π / μ / e)

Lifetime measurement

→ Good start time counter (σ ~100 ps)

position (σ ~350 µm) & angle (σ ~6.7 mrad) information

TOF counter

Timing measurement & Trigger Timing 2 Layer of plastic scintillator paddles (48 ch)

TOF counter

Timing measurement & Trigger Timing 2 Layer of plastic scintillator paddles (48 ch)

Drift Chamber

Tracking for angular measurement → Reconstruction to our target Same as HKS Drift Chamber

TOF counter

Timing measurement & Trigger Timing 2 Layer of plastic scintillator paddles

Drift Chamber

Tracking for angular measurement → Reconstruction to our target Same as HKS Drift Chamber

Focal Plane Scintillating Fiber Detector (New)

1x1 mm Sci-Fi in vacuum (832 ch)80 keV/c LSBSiPM photon counterWide mom. coverage (78 ~ 140 MeV/c)

Expected Spectrum from Simulation

Expected on ⁶Li target

Monte-Carlo simulation by

- ✓ Spec. Resolution
- ✓ Hyperfragment yield
- ✓ π^- branching ratio
- Background from QF hyperons

✓ Accidental Background

Simplest spectrum

Clear peak from ${}^{4}_{\Lambda}$ H, ${}^{3}_{\Lambda}$ H FWHM = 260 keV/c Low QF background Low accidental δB_{Λ} = several keV (stat.)

 $N(_{\Lambda}^{4}H) @MAMI = 40 cnt / 2 weeks$ $N(_{\Lambda}^{4}H) @JLab = 600 cnt / 1 weeks$

Expected Spectrum from Simulation

Expected on ¹²C target

Clouded spectrum, but separable ${}^{3}_{\Lambda}H, {}^{4}_{\Lambda}H$: Reference peak ¹²_AB : Directly produced hyp. Large cross-section, branching ratio 2-peaks from different daughter \rightarrow Spin-Parity assignment ^{10,11} Be, ^{10,11} B Isospin partner hyp. Good for p-shell CSB study ⁹∧Be Many ${}^{9}B+\pi^{-}$ decay in emulsion ⁸^{Li} Famous ⁸Be+ π^- decay channel

Summary

Lambda hypernuclei as a multi-body system with strangeness

High-resolution spectroscopy available thanks to narrow width of hypernuclear state Investigation of AN interaction nuclear medium / (hyper)nuclear structure possible More precise discussion on going thanks to recent progress of both experiment and calculation

High-resolution spectroscopy of electro-produced hypernuclei

Decay Pion Spectroscopy

Novel technique for B_{Λ} measurement from Decay Pion momentum measurement Excellent resolution (FWHM ~ 100 keV) and precision (δB_{Λ} ~ 10 keV) Measurement of hypernuclear ground-state started at MAMI, Germany Improving hyp. yield ~30 times thanks to better beam intensity & PID etc. Expecting decay pions from several s-, p-, (sd-) shell hypernuclei

Re-determination of Hypernuclear g.s. A binding energies

June 17 - 18, 2025 Summer Hall A/C Collaboration Meeting (S.Nagao, U-Tokyo, snagao@jlab.org)

Lifetime measurement (by product)

Possibility of Spin Assignment

Spin-Parity assignment only for several hypernuclear ground-state

Possibility of spin inversion of the ground state in neutron-rich hypernuclei

Weak-decay branching-ratio depending on the spin-parity relationship of parent hypernucleus and daughter nucleus

 \rightarrow spin-parity determination from weak decay branching-ratio

FINUDA exp. has determined spin-parity for several hypernuclei

[FINUDA, PLB681 (2009) 139] [FINUDA, NPA881 (2012) 322]

Prior experiment at Mainz, Germany

The MAinzer MIcrotron (MAMI)
Beam Emergy: 1.5 GeV max.
Beam Intensity: 100 μA max.
Beam Size: a few 100 μm
Duty Factor: 100 %

June 17 - 18, 2025

2025 Summer Hall A/C Collaboration Meeting (S.Nagao, U-Tokyo, snagao@jlab.org

Characteristics of DPS at JLab

RTM2			
	DPS @MAMI	DPS @JLab	
Target	Li / Be (39 mg/cm ² for Be)	Li / Be / B / C / Al / Ca / Pb (100 ~ 150 mg/cm²)	Various hypernuclei
Beam Energy / Current	1.5 GeV / (20 μA for Be)	2.24 GeV / 50 μA	Effective Λ production
K ⁺ Tag Efficiency	~20%	~80%	Better PID
π^- mom. resolution	<1×10 ⁻³ (FWHM)	2×10 ⁻³ (FWHM)	
mom. coverage	110 ~ 135 MeV/c	70 ~ 150 MeV/c	Covered Entire region
Beamtime	~ 2 weeks	~ 1 year	Better yield
"K ⁺ , π^{-} " time resolution	2000 ps	< 200 ps	Lifetime measure

Plan B (Sci-Fi detector)

alpha-source

alpha sources available from a vendor "Eckert & Ziegler" Get AF-type 3-nuclide mixed source through RadCon ²³⁰Th, ²⁴¹Am, ²⁴⁴Cm (1~5 kBq each) Φ = 5 mm source area, no cover <20 keV resolution (FWHM) **Removable** package \$3,610, 5-6 weeks delivery time Make special holder to mount to target ladder and 1x5 mm² slit to make small source point

Expected alpha-source result

