MOLLER Detector system status update

Sudip Bhattarai

Hall A/C Summer Meeting

June 17-18, 2025

Outline:

- Main integrating Detector
 - Components
 - Detector testing
 - Module productions and assembly status
- Shower-max detector
 - Testing and status update
- Pion detector
 - Testing and status update
- Scattered beam monitors (LAM, SAM, DBM)
 - Testing and status update
- Scanners detectors (upstream, downstream)
 - Testing and status update
- HVMAPS
 - Planning and production status

Main integrating detector Components

- Full assembly : 28 segments around ring with 8 detectors each; covers 6 radial regions, total 224 detector modules
- Quartz: High Purity Fused Silica (Heraeus Spectrosil 2000--H₂)
- Light guide: air-core aluminum-mirror (Anolux UVS and UVC)
- PMT: 3" ET 9305QKB (HPFS window, bialkali cathode, 10-stage)
- Chassis: aluminum and 3D-printed components

Fig: R5 module section view

Image courtesy: Michael Gericke, Larry Bartoszek

MAMI Testbeam 2023

- Mainz Microtron (855 MeV electron beam)
- Front flush segment prototype fully instrumented with 8 detector modules
 - Test detectors performance with different quartz (Heraeus and Corning), light guide material and configurations
 - Pulse height distributions (yield and resolution), uniformity scans, quartz position validation

Fig: Photograph of MOLLER Main detector full segment test

Image courtesy: Sayak Chatterjee

6000

5000

count

MAMI Testbeam results:

Ring 5 BF

Both the Corning and Heraeus give comparable results, validating the material and vendor polish ٠

langau fit

All detector rings have RMS/Mean of $\leq 30\%$ which MOLLER requires

Mean

Std Dev

 χ^2 / ndf

New UVC light guide performed as expected, giving greater than 30 PE mean response for R5 modules

91.72

38.66

282.7 / 109

 2.678 ± 0.057

 93.19 ± 0.10

 16.54 ± 0.07

400

Good agreement with Monte Carlo simulation •

Fig: PE and Resolution vs radial position for R1-R6 detectors

Image courtesy: Sayak Chatterjee

Cosmic testing

- Cosmic stand for prototype segment at UMass
 - Validate/match detector performance between testbeam and cosmic stand (using MC simulation)
 - QDC + CODA based DAQ System
 - Data matches MC simulations within ~15 %
- Cosmic stand at W&M
 - For testing fully assembled production segments and MOLLER event-mode DAQ system
- Other tests:
 - New LV and HV supplies, cabling

Fig: Typical PE distribution from UMass cosmic stand (left) and simulation (right) with the prototype detector module **Ring 5.**

Fig: (a) Umass Cosmics stand taking data, (b) CAD model of the the same stand and (c) the visualization of the detectors from Monte Carlo simulation

Image courtesy: Sayak Chatterjee, Jon Mott

Module production at UManitoba

• Light guides:

- Completed laser cut production in UofM machine shop
- Stored with protective film on
- 3D printed parts: enclosures and supports
 - Using carbon-fiber embedded ABS filament
 - Producing parts with array of 7+ printers
- PMT FE electronics: base dividers + pre-amps and DC-DC
 Converter assemblies
 - 270 out of 300 sets completed; ~180 have been tested

Fig: (left) Printing ring6 component, (right) printed parts on the shelf in cleanroom

Fig: Laser cut aluminum light guides for all rings (R1 – R6).

Fig: DC-DC converters

Image courtesy: Jie Pan, Kristofer Isaak, Mohammad Laheji

Module production at UManitoba

MELLER

- PMT components:
 - PMT housing light seal caps, cradle rings, interface gaskets, interface lids
- Sub-assemblies:
 - All Upper and Straight sub-assemblies to be completed soon
- Packing and shipping to W&M
 - Assembled modules are light tight tested, vacuum sealed and crated for shipment
 - Segments 1-4 shipped and received by W&M, segments 5-10 in process of shipping
 - On track for goal of 20 segments by end of summer and all segments by end of year

Fig: Sub-assemblies for detectors

Fig: Segment 5 to 8 ready to ship

Fig: Prusa XL printer in use to print interface lids

Fig: Vacuum sealing the module Image courtesy: Brynne Blaikie

Sudip Bhattarai

Module and segment assembly and testing at W&M

MELLER

- 179 out of 224+ polished quartz pieces received
- All components for segments 1 4 received
- Modules are unpacked and fully assembled with quartz in cleanroom
- Components (aluminum and lead) for all segment frames are in hand
- Segment frames 1 4 have been assembled, 5 6 in process
- Instrumentation and testing of segments 1 2 complete, segments 3 4 in process

Fig: (left) components at W&M, (right) assembled modules ready to mount

Fig: Cosmic stand (AT Box) at W&M

Fig: Segment frame: aluminum lead sandwich

Image courtesy: Brynne Blaikie, Sayak Chatterjee

Shower-max detector system

- Shower-max is a Cherenkov-based electromagnetic sampling ٠ calorimeter.
- Positioned 1.7 m downstream of Ring-5 to intercept the same Møller ٠ flux. Designed to provide additional MOLLER A_{PV} measurement.
- The active part uses 4 interleaved layers of 99.95% pure tungsten and ٠ high-purity fused silica (quartz radiators).
- Gives response proportional to energy of incident particle •
- Less sensitive to low energy and hadronic backgrounds
- Active region geometric size/acceptance: •
 - Each detector: 265 mm x 160 mm x (6mm x 4 quartz + 8mm x 4 tungsten --~10 X₀)
 - Radial coverage: 1020 mm to 1180 mm; no gaps around the ring

Fig: Shower-max detectors in its support ring

Image courtesy: Dustin McNulty

Showermax

Fig: Cross section view

Shower-max detector testing

• Beam Tests:

- 2018 (SLAC): 3, 5.5, and 8 GeV electrons, tested benchmarking and early full-scale prototypes
- 2022 (MAMI): 855 MeV electrons, tested the quartz wrapping to improve performance; new chassis and light guide
- 2023 (MAMI): 855 MeV electrons, tested production quartz and long pass filter performance
- 2025 (Jlab HallD): 3 6 GeV positrons, testing signal yield, resolution, and uniformity. Analysis in process
- Cosmic Testing:
 - 2022-2025 (Idaho)
 - 2025- present (Jlab testlab)

Fig: 2022 MAMI Testbeam

Fig: Cosmic stand at Idaho State

Shower-max module production

Procurement:

- 2024: All 130 quartz plates, 124 tungsten plates, 31 PMTs, 31 ٠ chassis and light guide assemblies (received and inspected)
- 2025: Support struts for ring mount, alignment and lifting fixtures, custom 78 mm longpass filters (received and inspected)

Assembly: ٠

- All 31 modules assembled, and cosmic ray tested in Idaho ٠
- Partially disassembled and shipped to Jlab in 3 separate ٠ shipments (Sept 2024, Nov 2024, and Feb 2025)
- 2 Modules reassembled for cosmic tests and Hall D testbeam, rest to reassemble this summer
- PMT cradle design finalized, 3D printing in progress
- Light tightening Kapton wrap design complete and in production
- Ready to transport to hall A by end of the year. ٠

Fig: PMTs

Fig: PMT Cradle Fig: Chassis and light guide parts

Fig: Assembled modules

Fig: Chassis and light guide assemblies stored in high bay area of testlab

Image courtesy: Dustin McNulty

Pion Detector

• Components

- 28 identical UVT-acrylic detectors (7 cm deep, 21 cm wide, 2.54 cm thick).
- Each read out by single 1" diameter PMT (ET 9125BQ)
- Detectors encased in Pb Donut to range-out Møller electron signal

Fig: Pion detector prototype

Fig: Cross section of the lead donut

Fig: Pion detector in the lead donut

Image courtesy: David Armstrong

Pion Detector Status

- Prototypes Testing:
 - 2022 (MAMI) 855 MeV electron
 - Measured det response vs position for two different detector prototypes
 - Cosmic Testing:
 - 4 scintillator paddles stand at JLab
 - Detector read out via fADC250, VTP
 trigger
- Procurement Status:
 - UVT-Acrylic, PMTs, base sockets: all procured
 - PMT Q/A testing: about to start
 - Prototyped 3D-printed enclosure
 - Prototyped PMT base/HV divider, fast amplifier
 - testing underway
 - All assembled detectors to be cosmic tested

Fig: (left) Pion detector prototype in MAMI e- beam , (right) prototype being tested in cosmic ray at jlab

Fig: (left) Acrylic modules, (middle) prototype fast amplifier, (right) prototype base/divider.

Image courtesy: David Armstrong

Large Angle Monitor (LAM)

• Detector system and components:

- 7 LAM detector modules around beamline, embedded in Pb Collar-2 in the Open phi-regions
- Each module has a quartz radiator with two 3" ET 9305QKB
 PMTs and 3D printed housing
- Prototype Testing:
 - 2023 (MAMI) 855 MeV electron used acrylic radiator
 - 2025 Hall D testbeam preproduction module (quartz radiator)
 - Cosmic testing in process at VaTech
- Procurement/Production Status:
 - All 7+2 quartz radiators received/inspected
 - All PMTs received/inspected
 - Completed 3D printing of parts

Fig: CAD assembly of LAM

Fig: (left) LAM prototype, (right) 3D printed and aluminum components for LAMs

Image courtesy: Daniel Valmassie

Small Angle Monitors (SAM)

Pion

Detectors

SAMs

Downstream

Showermax

Main

Tracking

Detector system and components: Chambers Detectors 8 SAM detector modules positioned symmetrically around beamline (diametrically opposed); monitors target density fluctuations Each module has 8 small guartz radiators (1.6 x 2.0 x 0.6 cm³) with aircore light guide and Hamamatsu 2" R375 PMT **Prototypes Testing:** 2023 (MAMI) 855 MeV electron Upstream SAM @ MAMI Scanner 2025 Hall D Testbeam (analysis in process) LAN Cosmic testing at VaTech PMT and base Air-core **Procurement/Production Status:** quartz lightguide All quartz received/inspected (March 2025) All PMTs received/inspected Cut light guides received from UManitoba Beampipe inserts to order this summer Fig: CAD model of SAM Fig: CAD assembly of SAMs Machining and assembly (early fall 2025) looking downstream

Image courtesy: Daniel Valmassie

٠

٠

٠

٠

٠

٠

٠

٠

٠

٠

Diffuse Beam Monitor (DBM)

- Detector system and components:
 - 14 DBM detector modules around the ring, attached to upstream face of Main detector support ring at radius greater than R6
 - Each module has one "bare" PMT (no radiator) and one PMT attached to quartz (10 x 7.1 x 1.0 cm³)
 - 3D printed holder
- Prototypes Testing:
 - 2025 Hall D Testbeam (analysis in process)
- Procurement/Production Status:
 - All quartz received/inspected (March 2025)
 - All PMTs received/inspected
 - Completed pre-production review
 - Full production and assembly in late summer 2025

Fig: Cross section view of DBM

Fig: 14 DBMs around the beam line Image courtesy: Devi Adhikari, Daniel Valmassie

Scanners (Upstream and Downstream)

• Components:

- Upstream: 1 module with 2 pieces of 1 x 1 cm² quartz, low-pressure air core light guide. Downstream: 4 modules, each with 1 piece of quartz
- Position controlled by Velmex 2D motion control system
- Supports use 8020, custom aluminum, and 3D printed components
- Prototypes Testing:
 - 2025 Hall D Testbeam (analysis in process)
- Procurement/Production Status:
 - All quartz received/inspected (March 2025)
 - All PMTs received/inspected
 - Vacuum components verified (March 2025)
 - Support structure redesigned and procured 8020 parts

Fig: (left)CAD assembly of downstream scanner, (right) assembly around the beam line

Image courtesy: Devi Adhikari, Daniel Valmassie

base

HVMAPS

- High Voltage Monolithic Active Pixel Sensor
 - Works as additional tracking plane just behind the ring5 quartz.
 - Verifies the event profile at higher beam currents; is radiation hard with high event processing speed
- Components:
 - 2352 HVMAPS (84 R5 modules x 4 flexprint/modules x 7 Sensors/flexprint) – 28 sensor chips per detector, 64k pixels/chip
- Prototyping/planning:
 - Chilled air manifold design tested to cool HVMAPS
 - Robotic assembly/cell integration in progress
 - Working with machine shop for carrier fixtures (for gluing, bonding, etc.)
- Procurement/Production Status:
 - Engineering run sensors (P2Pix) to be delivered by June 2025
 - Production wafers to deliver early 2026

Fig: (left)single sensor chip, (right) full flex behind R5

Fig: (left) robot at work, (left) 3D printed R5 carrier fixture protype

Image courtesy: Nafis Rafat, Kristofer Isaak

Summary

- Main integrating detector modules are in production and testing phase
 - Regular shipments of components are arriving at W&M
 - The process of full segment assembly, testing, and storage is ongoing
- Shower-max: All detector components are at JLab. System ready to move to hall A by early 2026
- **Pion detector:** Procurements completed, cosmic testing ongoing
- Scattered beam monitors: Procurements completed, full production and assembly by fall 2025
- **Scanners:** Procurements completed, testing ongoing
- **HVMAPS:** Preparations nearly completed, production wafers to be delivered early 2026

Additional Slides

Team members

Dustin McNulty (Idaho State U.)

•

٠

٠

٠

٠

٠

- Sudip Bhattarai (Idaho State U.)
- Sagar Regmi (Idaho State U.)
- Justin Gahley (Idaho State U.)
- Edwin Sosa (Idaho State U.)
- Michael Gericke (U. Manitoba)
- Juliette Mammei (U. Manitoba)
- Wouter Deconinck (U. Manitoba)
- Savino Longo (U. Manitoba)
- Brynne Blakie (U. Manitoba)
- Anuradha Gunawardhana (U. Manitoba)
- Kristofer Isaak (U. Manitoba)
- Laheji Mohammad (U. Manitoba)
- Tawleen Kainth (U. Manitoba)
- Nafis Niloy (U. Manitoba)

- Jie Pan (U. Manitoba)
- Sakib Rahman (U. Manitoba)
- Nazanin Roshanshah (U. Manitoba)
- Elham Gorgannejad (U. Manitoba)
- Krishna Kumar (U. Massachusetts)
- Sayak Chatterjee (U. Massachusetts)
- Jonathan Mott (U. Massachus etts)
- Sakib Sarkar (U. Massachusetts)
- Kashish Singh (U. Massachus etts)
- K Yabe (U. Massachusetts)
- Carl Zorn (Jefferson Lab)
- Ciprian Gal (Jefferson Lab)
- Chandan Gosh (Jefferson Lab)

• Mark Pitt (VaTech)

٠

- Devi Adhikari (VaTech)
- Daniel Valmessie (VaTech)
- Andrew Gunsch (VaTech)
- David Armstrong (W&M)
- Kate Evans (W&M)
- Tasneem Raza (W&M)
- Paul King (Ohio U.)
- Arindam Sen (Ohio U.)
- Ryan Conaway (Ohio U.)
- Sebastian Baunack (JGU, Mainz)
- Boris Gläser (JGU, Mainz)
- Malte Wilfert (JGU, Mainz)

- Rahima Krini (JGU, Mainz)
- Paul Souder (Syracuse)
- Larry Bartoszek (Bartoszek Engineering)

MOLLER in Hall A

MOLLER Experiment Equipments

MOLLER Experiment:

- Detailed information on Vassu's presentation
- US and DS Torus magnets in combination separates the moller scattered electrons from backgrounds
- ~400 individual detector modules from different subsystem are used in the experiment

MOLLER Detectors Requirements

MOLLER Detector Requirements:

- Full azimuthal coverage of Møller scattered electrons and backgrounds
- Maximize the light yield, minimize the excess noise above counting statistics
- Detector non-linearity
- Radiation hardness and shielding

Main integrating detector

- Position: ~27 m downstream from target
- Total 6 rings around the beam
 - For full radial and azimuthal coverage of main Moller and background
 - Each rings has 28 quartz tiles except ring 5 which has 84

Hall A/C Summer Meeting, June 17-18, 2025

Rings	PE yield	Resolution (Gsigma/Mean)	RMS/MEAN
1	26.6 <u>+</u> 0.1	~ 20 %	~ 30 %
2	25.0 <u>+</u> 0.1	~ 22 %	~ 28 %
3	22.5 <u>+</u> 0.8	~ 21 %	~ 28 %
4	23.6 <u>+</u> 0.2	~ 23 %	~ 30 %
5 BF	32.0 <u>+</u> 0.2	~ 18 %	~ 25 %
6	20.7 <u>+</u> 0.2	~ 22 %	~ 32 %

Cosmic Testing at W&M

Cosmic stand

- Validate the detector performance
- 4 scintillators to cover all 6 rings
- fADC + CODA based DAQ Systems
- Low voltage and

Modules assembly: W&M

- AT Assembly:
 - After clean room assembly, modules are mounted into the segment plate
 - The full segment plate in mounted into the AT box, which will be brought to the jlab later.

Quartz of	Received (06/17/2025)
Ring 1	12
Ring 2	24
Ring 3	13
Ring 4	21
Ring 5	89
Ring 6	20
Total:	179/224+

Pion Detector Prototypes test results:

HVMAPS

Assembly delivery status

- ~100 P2Pix sensors from engineering run to be delivered (June 2025).
- P2Pix collaboration meeting and training session in Germany (July 2025).
- Implement readout chain for HVMAPS (overlaps with both Compton EDet and Main Detector HVMAPS) (Summer 2025).
- Develop P2Pix readout firmware allowing control of sensors via external FPGA boards and test MOLLER HVMAPS readout board
- Continue development and verification of SCARA for HVMAPS assembly (Summer/Fall 2025).
- Implement P2Pix testing setup into the assembly process (Summer 2025).
- Assemble and test Compton detector planes using sensors obtained from engineering run, followed by delivery to JLab (Fall 2025).
- Proceed to assembling FPCs and HVMAPS enclosures for R5 using remaining sensors from engineering run (Fall 2025 onwards).
- Further delivery of production wafers expected early 2026, will continue to manufacture Ring 5 HVMAPS enclosures for the main integrating detector afterwards (2026).
- Assemble and mount as many R5 enclosures as possible before segment is installed into main detector array. Any remaining enclosures will be installed later during possible downtime.

