

A New Proposal to Measure the Nucleon Axial Vector Form Factor at Jefferson Lab

Todd Averett (William & Mary), Jim Napolitano (Temple) Bogdan Wojtsekhowski (JLab), <u>Weizhi Xiong (Shandong Univ.)</u> June 17th -18th 2025 JLab Hall A/C Collaboration Meeting

Outline

- Physics motivation
- Experimental concept and design
- Current status and projections
- Summary

The idea has been around a while!

- •LOI to PAC 1 (JN) Not a typo!
- •LOI to PAC 25 (A Deur)
- •LOI to PAC 52 (JN and BBW)

Physics Background

Charged Weak Current Analog of the Electromagnetic FF's

Vector Interaction

$$\langle p+q | J_V^{\mu} | p \rangle = \bar{u}(p+q) \left[F_1(q^2) \gamma^{\mu} + \frac{\kappa}{2m} F_2(q^2) i \sigma^{\mu\nu} q_{\nu} \right] u(p)$$

You are very familiar with these form factors.

Axial-Vector Interaction

$$\langle p+q | J^{\mu}_{A} | p \rangle = \bar{u}(p+q) \left[F_{A}(q^{2})\gamma^{\mu}\gamma^{5} + F_{PS}(q^{2})q^{\mu}\gamma^{5} \right] u(p)$$

Well measured at zero momentum transfer (beta decay). Our goal is to measure $F_A(q^2)$ at finite momentum transfer.

Physics Background

- Similar to EMFFs, AVFF is also an essential QCD observable for nucleons
- An important test ground for many theoretical calculations (LQCD, Dyson-Schwinger method...)

A. Meyer, A. Walker-Loud, C. Wilkinson ARNPS. 72 (2022) 205-232

C. Chen and C.D. Roberts EPJA 58 (2022) 10, 206

Physics Background

(Besides being another fundamental QCD observable!)

• New constraints on Generalized Parton Distributions

(Peter Kroll)
$$\begin{array}{ll} F_A^{(3)}(t) &= \int_0^1 \left[\widetilde{H}_v^u(x,\xi,t) - \widetilde{H}_v^d(x,\xi,t) \right] dx & \text{Valence quarks} \\ &+ 2 \int_0^1 \left[\widetilde{H}^{\bar{u}}(x,\xi,t) - \widetilde{H}^{\bar{d}}(x,\xi,t) \right] dx & \text{Sea quarks (small)} \end{array}$$

• Important input for DUNE and other high energy neutrino experiments

Important constraints on LQCD calculations needed to untangle neutrino oscillations in DUNE.

(Even a 25% measurement helps a lot.)

How It Was Measured Before

- The natural way to measure $F_A(Q^2)$ is neutrino scattering
 - $\succ vA$ scattering
 - $\succ vD$ bubble chamber experiments
 - $\succ vp$ scattering using plastic scintillator
- Limitations:
 - 1. Board range neutrino energy
 - 2. Usually not a free proton (nuclear effect)
 - 3. Large systematics

How It Was Measured Before

- Another model dependent method is pion eletroproduction near threshold
 - Need to assume partially conserved Axial current model (PCAC)
- Results with large uncertainties, and disagree at high Q²

Experimental Concept

- Is it possible to measure this using electron beam?
 - free proton target, no nuclear effect
 - no model dependency
 - high precision lepton beam, compared to neutirno beam

- No hope in detecting the neutrino obviously, but we can still capture the neutron
- Reaction kinematic close to elastic ep kinematic, that means at a given scattering angle:
 - Neutron kinetic energy is fixed
 - Neutron from this reaction has the largest kinetic energy
- For neutrons of interested, recon ebeam should equal beam energy
- Nice and easy!

$$E_{beam}^{rec} = \frac{E_n - (M_p^2 + M_n^2)/2M_p}{1 + (P_n \cos \theta_n - E_n)/M_p},$$

Experimental Concept

• In reality this is quite difficult...

• Charge current cross section: $\frac{d\sigma}{d\Omega_{\nu,lab}}|_{e+p\to\nu+n} = 1.35 \times 10^{-39} \text{ cm}^2/\text{sr}$

- Meanwhile, background rates from other channels:
 - Elastic ep cross section: $\frac{d\sigma}{d\Omega_{lab}}|_{e+p \to e+p} = 1.4 \times 10^{-32} \text{ cm}^2/\text{sr}$
 - Pion electro and photo-production rate $(ep \rightarrow e\pi^+ n, \gamma p \rightarrow \pi^+ n, ep \rightarrow e\pi^+ \pi^0 n...)$, should be even higher than elastic ep
 - What about aluminum cell window, quasi-elastic en, pion production in Al?

Experimental Concept

- 1. Need to measure the neutron angle and kinetic energy with high precision!
 - Neutron time-of-flight, can reach about 1% resolution for T with 100ps resolution, possible! (BAND detector in Hall B JLab)
 - Hadronic calorimeter, resolution ~50%/sqrt(E), used for suppress low E bg.
- 2. Need large acc. veto detector p(0.44 sr) to reject backgrounds (pion production, elastic ep...)
 - \succ p and e are co-planer, with constrained kinematics
 - For neutrons from pion production, *n* and π are also co-planer with constrained kinematics
- 3. Need carefully designed shielding to block Al windows
- 4. Only left handed *e* can produce signal!

The primary challenge is to reduce the backgrounds from electromagnetic processes (10⁷ larger than our signal) so that background subtraction yields a statistically useful signal.

Experimental Setup

- E=2.2 GeV, 120µA, P=85%
- 10cm LH2 target (pure; low D2)
- $\theta_n = 48^\circ$ so $Q^2 = 1 \text{GeV}^2$
- $T_n = 525$ MeV, v/c=0.77
- 15m to TOF, 65 ns, $\Delta\Omega$ =75 msr
- Expect to get $\sigma_{TOF}=100 \text{ ps}$

•
$$\theta_{\nu} = 30^{\circ} = \theta_{e}$$

•
$$E_e = 1.67 \text{ GeV}$$

Experimental Setup

- A 17.5m long new neutron arm will be built and essembled
 - > New large sweeper magnet to get rid of charged particle (2m tall aperture)
 - New TOF scintillator array for neutron timing measurement (11 layers)
 - Hadronic calorimeter (potentially use existing EMCal from STAR and/or BNL-E864, may need modifications)
 - > W shielding blocks to shield target windows

Experimental Setup

- A 17.5m long new neutron arm will be built and essembled
 - > New large sweeper magnet to get rid of charged particle (2m tall aperture)
 - New TOF scintillator array for neutron timing measurement (11 layers)
 - Hadronic calorimeter (potentially use existing EMCal from STAR and/or BNL-E864, may need modifications)
 - > W shielding blocks to shield target windows

G4 Simulation

- Simulation based on G4SBS
- LH2 target:
 - > 25cm long LH2 with **10cm active**
 - ➢ AI cell, windows 150um each
 - W shielding, block cell windows
- Veto arm
 - Center at 30°
 - Used as veto detector to reject elastic and pion production events
 - Calorimeter HCal
 - ~4m from target (0.4 sr), much larger then N-arm acc.
 - GEM trackers (only for calibration with 1uA)

Particle rate on TOF

- Sweeper magnet
 - > 1Tm, 2m tall aperture
 - Sweep away charged particles
- Simulation shooting 2.2GeV electron beam at target
- Particle flux measured in front of TOF and NCal
- Significant reduction of particle rate at high energy region with magnet turned on

Neutron Detection Efficiency

- Neutron energy resolution ~60% using energy deposition (edep) in NCal and TOF
- Neutron detection efficiency ~40%, when requires:
 - 1. Reconstructed kinetic energy > 100MeV using NCal and TOF edep
 - 2. TOF edep threshold 3MeV

count

- 3. 10ns time window for Ncal, 0.5ns time window for TOF
- 4. 1st layer of TOF used as veto for charged particle background

Energy Resolution from NArm Calorimetry

NArm Neutron Efficiency

53

Using NCal + TOF to Determine Beam Bunch

- So how do we know what bunch the neutron is coming from?
- JLab beam has bunch interval, 2ns, 4ns, 8ns, 16ns...
- BUT!:
 - > n we want to detect arrives at ~65ns (T = 529MeV)
 - ➤ at 8ns later, the neutron still has ~350MeV, 16ns later still ~250MeV...
 - ~60% energy resolution of calorimetry cannot reject events from out-of-time bunches!
- > Solution: move NCal 2.5m downstream, and measure beta using TOF and NCal
- Simplified idea: using elastic/QE n-p scattering
- Preliminary estimation: efficiency drops from ~40% to ~25%

Simulation Comparison between G4 And FLUKA

 Geant4 produce about ~2 times more neutron background from LH2 than FLUKA, 10 times more neutrons from aluminum, some beam test?

V

Simulation

Beam Time and Rates

Request Beam Time

• Level-0 trigger:

- NCal + TOF energy > 100 MeV
- 25 MHz for entire NCal
- Level-1 trigger:
 - Hit position match (0.25m²) and rough time cut (10ns) between NCal and TOF
 - ≻ 0.25 MHz

Level-2 trigger:

- Tigher geometric cut (15cm x 15cm)
- > 25 kHz, well within DAQ limit

	Target	Beam energy, GeV	Beam, μA	Time, days
Calibration	LH2/LD2	2.2	1	2.5
Production	LH2	2.2	120	50
Beam polarization	Moller	2.2	1	2.5
Total requested time				55

Background rate after cut and veto

Background Source	Rate [Hz]	
Neutrons from elastic ep	0.02	
Quasi-elastic from AI window	0.22	
Single pion production from LH2	0.81	
Pion production form AI window	0.16	
Neutrons from 2-step process	12.5	

Projected Results

- Final estimation of neutrino events obtained by fitting the EBeam spectrum
- Helicity + spectrum well described by Gaussian + Linear function
- Helicity spectrum can be described by two Gaussian (one for signal) + Linear function
- Preliminary estimation gives ~29% for the stat. uncertainty

of recon over # of true vn events for 1000 trials

Tantative Plan for Short Test Run

- Test run can be realized mostly based on
 - existing apparatus (E864 Cal., SHMS, W-based collimator, proton veto plane)
 - Two new TOF planes (~22 high reso. counters)
- Need PAC endorsement for short test run to demonstrate:
 - 1. Neutron time resolution with 2m long scintillator counters
 - 2. Neutron backgrounds from different sources (two-step processes, Al cell windows, bg helicity asymmetry...):

Summary

- A "new" method to measure axial form factor using polarized electron beam
 - Free proton target, no nuclear effect
 - > no model dependency
 - high precision lepton beam, compared to neutirno beam
- Projected result: 29% statistical uncertainty + 5% systematic uncertainty, with 50 PAC days running at 120uA @ 2.2 GeV at JLab
 - Already submitted to JLab PAC this year
- Still working on various potential improvements (and problems)
 - Uncertainty largely dominated by pion production background (single and multi pions)
 - Geant4 gives significantly more neutrons than FLUKA, need beam test for background measurement
 - Optimization of collimators, target cell, TOF, and neutron efficiency
- Essential to have short test run for neutron bg rate and time reso.
- Any suggestion and ideas are very welcomed, thank you for your attention!

Backup

What Challenge We Are Facing Right Now?

- In principle, elastic neutrons should have the highest T and E^{rec}_{beam} at a given angle, why there are super-elastic events?
- This is one of the main background! Very difficult to veto

They are mostly come from two step process (based on current studies):

- 1. A high energy neutron produced with very small angle
- 2. This neutron scatters with another proton in LH2
- 3. Scattered neutron bounces into detector

G4 Simulation

- Additional neutron arm for neutron detector, center 48°, arm at 15m
 - 1. Arm made of Sweeper magnet, neutron TOF, and neutron calorimeter (NCal)
 - 2. Coverage: $44^{\circ} < \theta < 52^{\circ}$, $-20^{\circ} < \phi < 20^{\circ}$
- Sweeper magnet:
 - > 1Tm, 2m tall aperture
- TOF:
 - ➤ 11 layers of scint. bars
 - > 140 bars per layer
 - ➢ Bar dim. 6cm x 6cm x 200cm
 - ➢ Expected t reso. ∼100ps
- NCal:
 - Fe+Scint. Calorimeter, Similar to HCal in SBS arm, or use existing calorimeters

	Quantity	Variable	Value	
I	Nucleon mass (proton)	m	$0.938~{\rm GeV}$	
	Beam energy	E	$2.20~{\rm GeV}$	
	$(Total 4-momentum)^2$	s	$5.01 \ {\rm GeV^2}$	
-(-	4-momentum transfer) ²	$-t = Q^2$	$1.00 \ {\rm GeV}^2$	
	Energy transfer	$\nu = E - E_{\nu}$	$0.53~{ m GeV}$	

Neutron/Proton

Scattering angle	$ heta_n$	48.0°
Energy	E_n	$1.47~{\rm GeV}$
3-momentum	p_n	$1.13~{\rm GeV}$
Kinetic energy	E_k	$0.53~{ m GeV}$
Beta	eta	0.77
Time-of-flight (15 m)	t_n	$65.0 \mathrm{~ns}$

Neutrino/Electron

Scattering angle	$ heta_ u$	30.0°
Energy	$E_{ u}$	$1.67~{\rm GeV}$

Systematics for the cross section value (relative)

Beam polarization	85%	$<\!2\%$
Luminosity	$3.1\times10^{38}~{\rm Hz/cm^2}$	2%
Neutron arm solid angle	$70 \mathrm{msr}$	1-2%
Neutron detection efficiency	0.25	2-3%
Overall systematics		$<\!5\%$

	Target	Beam energy, GeV	Beam, μA	Time, days
Calibration	LH2/LD2	2.2	1	2.5
Production	LH2	2.2	120	50
Beam polarization	Moller	2.2	1	2.5
Total requested time				55