NTPE+: Measurement of the Two-Photon Exchange in Electron-Neutron and Positron-Neutron Elastic Scattering A Proposal to PAC53

Eric Fuchey College of William & Mary (On behalf of the nTPE collaboration)

Hall A/C Summer Collaboration Meeting June 17th, 2025

Elastic *e*-*N* scattering: Rosenbluth

Global Fit on Rosenbluth Slope in *e*⁻*p* Scattering

- Until GEp-I at Jefferson Lab [Phys. Rev. Lett. 84, 1398 (2000)], OPE accepted to be a sufficient approximation
- Large discrepancy between Rosenbluth and polarization transfer (for measurements at Q² ≥ 2 GeV²);
- Missing contribution likely due to Two-Photon Exchange (TPE).

Two-Photon Exchange with Positrons

- TPE in elastic e^+N scattering:
- Hard TPE amplitude interferes with OPE amplitude:

Interference term depends on the lepton charge to the power 3:

□ TPE expected to be of same magnitude opposite sign in e^+N and e^-N ; □ measurement $e^+N / e^-N => 2$ TPE

e⁺*p* measurements

- Ratio of e^+p/e^-p measured in several experiments;
- Latest measurements in Olympus, with Q² up to 2 GeV²:

• Essentially inconclusive results

• Note: Rosenbluth/polarization discrepancy insignificant at low Q²

Two-Photon Exchange in en Scattering

• Predictions from Phys. Rev. C72, 034612 (2005) on en scattering:

```
\square small TPE contribution at Q<sup>2</sup> around 1 GeV<sup>2</sup>;
```

 \Box significant at 3 GeV² and beyond;

□ No Rosenbluth/TPE measurement on the neutron => nTPE+

Two-Photon Exchange in *en* **Scattering**

- NTPE+: E.F. (contact), S. Alsalmi, P. Blunden, P.Datta, E. Wertz
 - \Box measure neutron TPE at Q2 = 3 GeV2, 4.5 GeV2, 5.5 GeV2
 - Direct measurement of nTPE via e+n/e-n ratio
 - \square Rosenbluth measurements of e-n and e+n cross section

 $\Box =>$ disentangle contribution of TPE in Rosenbluth/polarization discrepancies

nTPE+ with Jefferson Lab Positron Upgrade

- New injector to produce polarized positrons (and electrons)
- Promised specifications:

\Box 1µA e^+ without polarization;

 \square 60nA with polarization;

• SBS:

□ Major part of Hall A 12 GeV program at Jefferson Lab; coupled with Bigbite for electron detection

• SBS form factor program (see SBS talks tomorrow)

GMN **D nTPE** (E12-20-010): ♦ en Rosenbluth separation **D**GEN **D**GEN-RP D GEP

• Other Physics: **D** SIDIS **D** KLL **D** TDIS **D** nDVCS

Super BigBite Spectrometer: BigBite

- Detector package tilted 10% behind dipole magnet
- Function: Electron measurement;
- Detector package:
 - **D** GEMs:

♦ 4 front layers 40 x 150 cm², 1 back layer 60 x 200 cm²

momentum trivector + vertex measurement

♦ 1% momentum resolution, 1mr angular resolution;

- **GRINCH**:
 - C4F8 Cherenkov radiator
 - Cherenkov light readout by 510 PMTs
 - ♦ Electron ID ~98% Pion rejection

Calorimeter: (shower+preshower)

- Shower: 7x27 lead glass modules
- PreShower: 2x26 lead glass modules
- ♦ Trigger
- ♦ Electron ID/Pion rejection
- □ Hodoscope:
 - ♦ 90 Scintillators 60 x 2.5 x2.5 cm³
 - scintillators readout on both ends
 - ♦ Precision Timing: 500 ps resolution

Preshower

GRINCH

Hodoscope

Shower

GEMs

BigBite magnet

Super BigBite Spectrometer: HCal

- 12 x 24 iron/scintillator modules 15 x 15 * 90 cm³
- Function: Nucleon measurement:
 - \square Position resolution ~5.5cm
 - □ Timing resolution (ADC only) ~1.5 ns
 - □ Energy resolution ~50 %
- Nucleon identification (see next)

Neutron Measurement with Durand Technique

- Established by Durand in Phys. Rev. 115, 1020 (1959).
- Used for SBS experiments GMN, nTPE, **nTPE+**:

 \square simultaneous *enlep* measurement on D_2

 \square Separation of p and n with magnet

 $\Box \sigma_{en} / \sigma_{ep}$ with reduced systematics (cancellation of Fermi momentum,...)

nTPE+ Kinematics

- nTPE+ will be proposed in Hall C:
 - □ SBS, BigBite and target installed downstream of pivot;
 - D SBS,BigBite locations for our kinematics don't interfere with HMS/SHMS
 - at their largest angles;

nTPE+ Kinematics

• nTPE+ will be proposed in Hall C:

□ SBS, BigBite and target installed downstream of pivot;

BS,BigBite locations for our kinematics don't interfere with HMS/SHMS at their largest angles;

• Six kinematic settings:

 \square each will run e^+ , e^- , LD_2 , LH_2 ;

□ Three settings at 2 pass, two settings at 3 pass, one setting at 1.5 pass.

Kinematic	e^+/e^- - I_{beam}	Q^2	Ε	E^{\prime}	θ_{BB}	p'	θ_{SBS}	ϵ
	(μA)	$({\rm GeV/c})^2$	(GeV)	(GeV)	degrees	$({\rm GeV/c})$	degrees	
1+/-	$e^{+/-}$ (1.0)	4.5	4.4	2.00	41.9	3.20	24.7	0.600
2+/-	$e^{+/-}$ (1.0)	4.5	6.6	4.20	23.3	3.20	31.2	0.838
3+/-	$e^{+/-}$ (1.0)	3.0	3.3	1.71	42.8	2.35	29.5	0.638
4+/-	$e^{+/-}$ (1.0)	3.0	4.4	2.81	28.5	2.35	34.7	0.808
5+/-	$e^{+/-}$ (1.0)	5.5	4.4	1.47	54.9	3.75	18.7	0.420
6+/-	$e^{+/-}$ (1.0)	5.5	6.6	3.67	27.6	3.76	26.9	0.764

nTPE+ Measurements: e+le- ratios R_{2v}

• $R^n_{2\nu}$ measurement with Durand technique:

□ Measure $R_{n/p} = \sigma_{en} / \sigma_{ep}$ consecutively for positrons and electrons; □ $\rho_{\pm} = \left(\frac{\sigma_{e^{+n}}}{\sigma_{e^{+p}}}\right) / \left(\frac{\sigma_{e^{-n}}}{\sigma_{e^{-p}}}\right) = R_{2y}^n / R_{2y}^p$ for Q² = 3 GeV², 4.5 GeV², 5.5 GeV² □ e⁻ data at same beam intensity as e⁺ data (1µA)

June 17th 2025

nTPE+ Measurements: Rosenbluth slopes Sⁿ

• Rosenbluth measurement with Durand technique:

Definition Measure
$$R_{n/p} = \sigma_{en}/\sigma_{ep}$$
 for both ε points;

$$P A = \frac{R_{n/p}^{\epsilon_1}}{R_{n/p}^{\epsilon_2}} \simeq \frac{1 + \epsilon_2 S^p}{1 + \epsilon_1 S^p} \times (1 + S^n \Delta \epsilon)$$
D Rosenbluth e^+p up to $Q^2 = 5.5 \text{ GeV}^2$ sourced from PR12+23-012
(M. Nycz et al.):
1.5

$$\frac{P R_{LT}^{\epsilon_2} = 0.5 \text{ GeV}^2 \text{ sourced from PR12+23-012} + R_{LT}^2 \text{ Projected}(e^-p)$$

$$\frac{P R_{LT}^{\epsilon_2} = 0.5 \text{ GeV}^2 \text{ sourced from PR12+23-012} + R_{LT}^{\epsilon_2} \text{ Projected}(e^+p)$$

$$\frac{P R_{LT}^{\epsilon_2} = 0.5 \text{ GeV}^2 \text{ sourced from PR12+23-012} + R_{LT}^{\epsilon_2} \text{ Projected}(e^+p)$$

$$\frac{P R_{LT}^{\epsilon_2} = 0.5 \text{ GeV}^2 \text{ sourced from PR12+23-012} + R_{LT}^{\epsilon_2} \text{ Projected}(e^+p)$$

$$\frac{P R_{LT}^{\epsilon_2} = 0.5 \text{ GeV}^2 \text{ sourced from PR12+23-012} + R_{LT}^{\epsilon_2} \text{ Projected}(e^+p)$$

$$\frac{P R_{LT}^{\epsilon_2} = 0.5 \text{ GeV}^2 \text{ sourced from PR12+23-012} + R_{LT}^{\epsilon_2} \text{ Projected}(e^+p)$$

$$\frac{P R_{LT}^{\epsilon_2} = 0.5 \text{ GeV}^2 \text{ sourced from PR12+23-012} + R_{LT}^{\epsilon_2} \text{ Projected}(e^+p)$$

$$\frac{P R_{LT}^{\epsilon_2} = 0.5 \text{ GeV}^2 \text{ sourced from PR12+23-012} + R_{LT}^{\epsilon_2} \text{ sourced from PR12+23-012} + R_{LT}^{\epsilon_2} \text{ Projected}(e^+p)$$

$$\frac{P R_{LT}^{\epsilon_2} = 0.5 \text{ Sourced from PR12+23-012} + R_{LT}^{\epsilon_2} \text{ sourced from$$

June 17th 2025

nTPE+ Systematics: GMn/nTPE Analysis

• Sources of systematics for $R_{n/n}$:

D See GMn/nTPE analysis talk tomorrow for more details;

• Preliminary estimation of systematics for GMn analysis:

(credit: P. Datta, LBNL, formerly UConn)

 \square (*) => Divided by a factor 3 to account for possible improvements \square Introduced factors of covariance for correlations between settings

$Q^2 \; (({ m GeV/c})^2)$	3.0	4.5	5.5	$\delta_{cov, e+/e-}$	$\delta_{cov, \epsilon_1/\epsilon_2}$
Radiative corrections [*]	0.77	1.11	1.26	+0.80	0.0
Inelastic contamination	0.33	0.75	0.84	+0.5	0.0
Nucleon detection efficiency [*]	0.7	0.7	0.7	+0.95	+0.5
Nucleon charge exchange in FSI	0.04	0.01	0.02	+0.95	0.0
Selection stability	0.16	0.15	0.40	+1.00	0.0
$\Delta R_{n/p}$	1.10	1.52	1.72	-	-
$\Delta ho_{\pm} / ho_{\pm}$	0.44	0.74	0.83	-	-
$\Delta A/A$	1.40	2.03	2.32	-	-

Neutron Detection Efficiency Measurement

- Neutron and protons detection efficiencies similar, but not identical;
 Determine absolute detection efficiency for both protons and neutrons;
- *Explicit* beam request to measure $\gamma p \rightarrow \pi^+ n$ at "kinematic end-point": $\Box \pi^+$ measured by BigBite, *n* measured by HCal;
 - **\Box** Strict kinematic selection to ensure $\gamma p \rightarrow \pi^+ n$ exclusivity;
 - \Box LH₂ target with 6 % X_0 copper upstream to enhance photon production ;
 - □ Electron beam to increase luminosity;
 - \square Coverage of ~1/4 of HCal surface sufficient to determine neutron efficiency

- Sources of systematics for $R_{n/p}$: \square See GMn/nTPE analysis talk tomorrow;
- Systematics specific to R_{2y}^{n} and S^{n} :

$Q^2 \; (({\rm GeV/c})^2)$	3.0	4.5	5.5
$\Delta \rho_{\pm}/\rho_{\pm} \ (\text{stat})$	0.28	0.25	0.58
$\Delta \rho_{\pm}/\rho_{\pm} $ (syst)	0.44	0.74	0.83
$\Delta R^p_{2\gamma}/R^p_{2\gamma}$ [13]	0.78	0.42	0.79
$\Delta R_{2\gamma}^n/R_{2\gamma}^n$ (syst)	0.93	0.89	1.28

D	n	
Γ ₂	v	

$\rm Q^2((GeV/c)^2)$	$3.0 (e^-)$	$3.0 \ (e^+)$	$4.5 \ (e^-)$	$4.5 \ (e^+)$	$5.5~(e^-)$	$5.5 (e^+)$
$\Delta A/A \ (\text{stat}, \ \%)$	0.32	0.32	0.40	0.40	0.58	0.58
$\Delta A/A \text{ (syst, \%)}$	1.40	1.40	2.03	2.03	2.32	2.32
$S^{p} \; [3, 14]$	0.1056	-0.0267	0.0616	-0.0608	0.0478	-0.0773
ΔS^p [3, 14]	0.0160	0.0114	0.0165	0.0164	0.0170	0.0254
ΔS^n	0.100	0.096	0.103	0.103	0.087	0.094

 S^n

[3] Phys.Rev.Lett. 128 (2022) 10, 102002
[13] A. Schmidt *et al.* PR12+23-008
[14] M. Nycz *et al.* PR12+23-012

NTPE+ Time Request

- All 6 kinematics with e+/e- LD2/LH2:
 - requires 952 PAC hours (almost 40 days) beam on target:
 - □ 224 additional PAC hours necessary for setting changes:
 - ◆ 144 hours for 6 e⁺/e⁻ changes;

80 hours for 5 magnet angle changes (and pass changes);

Kin	e^+ or e^-	E_{Beam} (pass)	I_{Beam}	Q^2	θ_{BB} / θ_{SBS}	target	PAC Time								
		(GeV)	μA	$({\rm GeV/c})^2$	(degrees)		(hours)								
Optics	e-	3.3 (1.5)	10.0	3.0	42.8/29.5	C-foil	16		BB/SBS magnet configuration change						16
1-	e-	3.3(1.5)	1.0	3.0	42.8/29.5	LD2/LH2	24/12	5+	e^+	4.4(2)	1.0	5.5	54.9/18.7	LD2/LD2	120/40
Reconfiguration to positrons						24^{\dagger}	Reconfiguration to electrons							24^{\dagger}	
1+	e^+	$3.3 (3^*)$	1.0	3.0	42.8/29.5	LD2/LH2	24/12	5-	<i>e</i> ⁻	4.4(2)	1.0	5.5	54.9/18.7	LD2/LH2	120/40
	Pass	s change + BE	B/SBS	magnet co	nfiguration of	change	16		Pass change $+$ BB/SBS magnet configuration change						
2+	e^+	4.4 (2)	1.0	3.0	28.5/34.7	LD2/LH2	16/16	4-	e^-	6.6(3)	1.0	4.5	23.3/31.2	LD2/LH2	48/16
Reconfiguration to electrons						24^{\dagger}	Reconfiguration to positrons						24^{\dagger}		
2-	e ⁻	4.4 (2)	1.0	3.0	28.5/34.7	LD2/LH2	16/16	4+	e^+	6.6(3)	1.0	4.5	23.3/31.2	LD2/LH2	48/16
		BB/SBS n	nagnet	configurat	tion change		16	BB/SBS magnet configuration change						16	
3-	e-	4.4 (2)	1.0	4.5	41.9/24.7	LD2/LH2	96/16	6+	e^+	6.6(3)	1.0	5.5	27.6/26.9	LD2/LH2	36/12
NDE	e ⁻	4.4 (2)	1.0	4.5	41.9/24.7	LH2+6% Cu Rad	16	Reconfiguration to electrons						24^{\dagger}	
Reconfiguration to positrons						24^{\dagger}	6-	<i>e</i> ⁻	6.6(3)	1.0	5.5	27.6/26.9	LD2/LH2	36/12	
3+	e^+	4.4 (2)	1.0	4.5	41.9/24.7	LD2/LH2	96/32	Total	beam						952
									time req	uest					1176

NTPE+ Projections

June 17th 2025

NTPE+ Projections

• Estimations of $e^{+}n$ and $e^{-}n$ Rosenbluth slopes

□ Superimposed on Fig. 10.1.9 of <u>arXiv:2212.11107 [hep-ph]</u>. □ $\mu_n G_E^n/G_M^n$ calculated from projected Rosenbluth slopes;

 \square Other G_E^n measurements and projections are polarization data;

Summary

- NTPE+: unprecedented measurements on Two-Photon Exchange on Neutron:
 Direct measurement of nTPE via e+n/e-n ratio
 Rosenbluth measurements of e-n and e+n cross section
 Disentangle contribution of TPE in Rosenbluth/polarization discrepancies
 complements current SBS Form Factors program;
- NTPE+ will benefit from the return of experience of the NTPE analysis
 - Extraction method worked out;
 - D Systematics mostly under control:
 - HCal detection efficiency systematics significantly improved with a dedicated measurement;

Thank you for your attention !

Global Fit on Rosenbluth Slope in *e*⁻*p* Scattering

- Until GEp-I at Jefferson Lab [Phys. Rev. Lett. 84, 1398 (2000)], OPE accepted to be a sufficient approximation
- Large discrepancy between Rosenbluth and polarization transfer (for measurements at Q² ≥ 2 GeV²);
- Missing contribution likely due to Two-Photon Exchange (TPE).

Systematic uncertainties: Inelastic contamination

Systematic uncertainties: Inelastic contamination

- Latest improvements on estimation of inelastic contamination:

 Inelastic Monte Carlo combined with out-of-time events
 neutron/proton cross section ratio obtained with newest function compared with:
 - ◆ 2nd and 4th order polynomials, gaussian to fit inelastic background;

 $\blacklozenge \Delta y$ side-band selection

nTPE+ Systematics: HCAL Detection Efficiency

- HCal detection efficiency major source of systematic especially for nTPE(+):

 □ Neutron and protons detection efficiencies similar, but not identical;
 □ HCal efficiency from LH2 data shows non-uniformity of HCAL efficiency:
 □ Larger nucleon projection footprint on HCal for higher ε kinematic:
 - non-uniformity has more impact on low ϵ kinematic;
 - n/p cross section ratio biased for both, more biased for low ε ;
 - \square For e^+/e^- measurements, nucleon projection footprint is identical

Systematic uncertainties: Radiative corrections

• Radiative corrections (analysis credit: P. Datta, LBNL):

□ SIMC events with the following configurations for radiative effects:

- ♦ (1) No radiative corrections i.e. none of the tails are radiated
- \bullet (2) One tail = 0 => All (e, e', and p) tails are radiated
- \bullet (3) One tail = -3 => All but p tails are radiated

 \square SIMC events processed through g4sbs \rightarrow libsbsdig \rightarrow SBS-offline;

Properly weighted Dx distribution for all types of events with the same selection
 Extract individual yields and then quantify the correction

29

