

Measurement of a Lepton-Lepton Electroweak Reaction

An Ultra-precise measurement of the weak mixing angle using M arnothing ller Scattering

Vassu Doomra (on behalf of the MOLLER Collaboration) 2025 Summer Hall A/C Collaboration Meeting June 18, 2025

LER Experiment

Outline

- Introduction
- Previous Weak Mixing Angle Measurements
- MOLLER Impact
- Detector Equipment
 - Target
 - Primary Acceptance Collimator
 - Spectrometer
 - Tracking Detectors
 - Main Integrating Detector
- Auxiliary Detectors

Parity Violating Asymmetry (A_{PV}) in Møller Scattering

• Measure A_{PV} in the scattering of longitudinal polarized electrons off unpolarized electrons:

Tree Level Feynman diagrams for Møller scattering

The aim is to measure Q_{W}^{e} to an overall fractional accuracy of 2.3%.

Previous Weak Mixing Angle Measurements

Low Energy Measurements

- APV: Atomic Parity Violation ¹³³Cs (1997)
- **+** PV Moller Scattering
 - SLAC E158 (2002 2003) limited statistics
 - Next generation: MOLLER (factor of 5 better)
- + PV Elastic e-p scattering: Q_{weak} (JLab 2018)
- * Neutrino Deep Inelastic Scattering: NuTeV (FermiLab 1999)

Measurements near Z⁰ Pole

◆ SLC at SLAC (1994-95) and LEP at CERN (1992): e⁺e⁻ colliders

• High precision measurements

MOLLER A_{PV} would be the first low Q^2 measurement comparable to the high-precision measurements near Z-pole.

Vassu Doomra

High Experimental Impact

- Search for new physics by looking for deviations from Standard Model predictions.
- Very precise experimental goal and the low energy scale of the reaction results in a remarkable sensitivity to probe TeV-scale dynamics.

 $\delta(A_{PV}) \sim 0.8 \, ppb \rightarrow \delta(Q_W^e) = \pm 2.1 \, \text{(stat.)} \pm 1.0 \, \text{(syst.)} \, \%$

$$\frac{\Lambda}{\sqrt{|g_{RR}^2 - g_{LL}^2|}} = \frac{1}{\sqrt{\sqrt{2}G_F |\Delta Q_W^e|}} \approx \frac{246.22 \text{ GeV}}{\sqrt{0.023Q_W^e}} = 7.5 \text{ TeV}$$

Best Contact Interaction reach for leptons at low OR high energy

To do better for a 4-lepton contact interaction would require: Z factory, linear collider, neutrino factory or muon collider

The MOLLER Apparatus

Vassu Doomra

Modes of Data Taking

Counting Mode

- Low Beam current Calibration runs
- Essential for Kinematic verification
- Studying the response of Main Detector to scattered electron kinematics.
- Scattered electron rates sufficiently low to allow for individual electron counting.

Integration Mode

- Operating at full beam current
 - Essential for Møller asymmetry measurement.
 - High electron rates in the Møller ring reaching up to 1 MHz/mm²
 - Counting individual electrons not possible.

LH₂ Target

- Largest LH2 target ever built!
- Irreducible backgrounds: Radiative e-p elastic and inelastic scatterings, relatively well understood
- Target designed using Computational Fluid Dynamic Simulations to meet the requirements.

Target		Beam
Cell Length	125 cm	I _{max} , E
Cell Thickness	> 8.4 g/cm ²	Raster area
Al windows in beam	< 0.25 mm	Beam Spot
p, T (cold)	35 psia, 20 K	Helicity Flip Rate
θ, φ Acceptance	5-20 mrad, 2π	Cell alignment tolerance
LH2 pump flow	< 25 l/s	
Target Power	4500 W	Max Beam Power
LH2 density reduction < 1% @ 70 μA LH2 density fluctuations δρ/ρ < 30 ppm @ 960 Hz 0.6x Qweak δρ/ρ @ 1.5x beam power		

70 μA, 11 GeV < 25 >100 µm 1920 Hz 0.5 mm

3200 W

Precision Collimator System

$$A_{PV} = mE \frac{G_F}{\sqrt{2\pi\alpha}} \frac{4sin^2\theta_{COM}}{(3 + cos^2\theta_{COM})^2} Q_W^e$$

- Utilizing the fact that Møller scattering is identical particle scattering.
- Accepting Møller scattered electrons around $\theta_{COM} = 90^{\circ}$ where the asymmetry is at a maximum.
- The odd number of coils allow for 100% acceptance by always detecting one of the electrons involved in the scattering.
- COM Angles : 60° 120°
- -11 GeV in; ~ 2 8 GeV out
- 50% azimuth, 100% acceptance!

Spectrometer Concept

Simulations performed by the spectrometer group (Juliete et. al.)

Vassu Doomra

- Provide kinematic separation between Møller and Mott-scattered • electrons at the main detector.

Spectrometer Components

DS Enclosure

TM-1 Complete

*Pictures from Michael Dion's talk at 2025 MOLLER Collaboration Meeting

Vassu Doomra

TM-2

SC-4 Coil

Tracking Detectors

- Four layers of Gas Electron Multipliers (GEMs) in each of the seven sectors.
- Mounted on a pair of rotating support wheels to allow measurements of the full azimuthal acceptance.
- Used in low beam current measurements (counting mode).
- Measure the track positions r and ϕ and also the directions

Vassu Doomra

r' =
$$\frac{dr}{dz}$$
 and $\phi' = \frac{d\phi}{dz}$

7 modules per layer and total of 4 layers.

James Shirk, Brynna Moran

Goals of Tracking Detectors

 Determine the average kinematic factor and it's associated uncertainty

$$KF = \frac{A_{PV}}{Q_w^e} = m_e E_{beam} \frac{G_F}{\sqrt{2\pi\alpha}} \frac{2y(1-y)}{1+y^4 + (1-y)^4} \quad y = \frac{1}{E}$$

- Verify the acceptance of the toroidal spectrometer.
- Measure the position dependent light-output response of the quartz detector.

Goal: Measure KF to a fractional accuracy of less that 0.5%

Requires a sieve collimator and thin C foil targets

'beam

Sieve Collimator

IR: 26.5 mm OR: 98 mm Thickness 100 mm

Holes Diameter: 5 mm

Main Integrating Detector

- The Main integrating detectors measure the physics asymmetry for Møller scattering as well as for the background processes.
- Radiation hard fused-silica Cherenkov detectors with radial and azimuthal segmentation.
- Total of 6 rings and 224 detectors.
 - 84 detectors in Ring 5 and 28 in each of the other rings.
 - Covers a radial region between 60 110 cm.
 - The Møller asymmetry measurement will occur in Ring 5.

Quartz Crystal: Brynne Blaikie's Talk at MOLLER Collaboration meeting 2025 Vassu Doomra

Shower-Max Detector

Shower-Max Detector is a quartz-tungsten Electromagnetic Calorimeter.

- Intercepts the same scattered electron flux as the main Møller Ring 5
- Provides a supplemental energy-weighted measurement of the Møller signal with less sensitivity to hadronic background.
- Total 28 modules in 7 septants

Vassu Doomra

Fig: Int det system with Showermax ring in the beam downstream (front in the picture)

Image Courtesy: Sudip Bhattarai

Pion Detector is a Lucite Cherenkov detector.

- Downstream of both the MD and the Shower-max detector behind a Pb absorber donut (to range out the Møller electrons).
- Will determine the hadronic asymmetry (in integration mode) and the dilution (in the counting mode).

$$f^{\pi} = \frac{R^{\pi}}{R^e + R^{\pi}}$$

- Pion detectors encased in Pb donut to largely rangeout Moller electron signal (45 X_0)
- 28 identical acrylic detectors (7 cm deep, 21 cm wide, 2.54 cm thick). Each read out by single PMT

Image Courtesy: David Armstrong

Irreducible Background Deconvolution

- Deconvolute the signal from the background using the segmented detector plane
- Elastic ep: ~10% of the signal, asymmetry is well known
- •Inelastic ep: < 0.3% of the signal but asymmetry is ~20x larger, not well know,
- The inelastic contribution is prominent in Rings 3 and 4, will be measured there.

Experimental Measurement of A_{PV}

- Flux-integration technique for measuring A_{PV}
- The response of the quartz detectors is proportional to the scattered flux. •
- The scattering asymmetry is measured for a pair of windows with right-(left-) ullethanded polarization as

Corrected for helicity correlated beam fluctuations

$$A_i^{raw} = \left(\frac{F_R - F_R}{F_R + F_R}\right)$$

Asymmetry contribution from other background sources and their dilutions

$$\langle A \rangle - A_F - A_{\text{lin}} - \sum_i f_i^{\text{bkgd}} A_i^{\text{bkgd}} \rangle$$

False Non-linearity correction

June 18, 2025

- High precision test of electroweak theory in a low-energy setting. -Can help resolve discrepancies in $sin^2\theta_W$ measurements.
- We are about 70% complete with construction so it's about time to have ERR2 (scheduled for the end of July). -Target part of the review will happen at a later date in the Fall.
- EER3, will allow us to turn the equipment on and take data, tentatively scheduled for Aug, 2026.
- We are less than 2 years away from having physics data!

BackUp

Transverse Polarization

Transverse polarization analyzing power with azimuthal segmentation.

For Identical Particles, the magnitude of asymmetry must be odd around 90 degrees in the center of mass.

Higher-Order Radiative Corrections

- The tree-level electroweak theory prediction for the weak charge of electron is modified even at the 1-loop level.
- θ_w becomes dependent on the energy scale at which the measurement is carried out.
- Hard radiative corrections involving the massive vector bosons at the loop level modify the tree-level prediction quite significantly. Czarnecki and Marciano (1996) [arXiv:hep-ph/9507420]
- The dominant effect comes from the γ -Z mixing diagrams. Czarnecki and Marciano (2000) [arXiv:hep-ph/003049]

