Measurement of a Lepton-Lepton Electroweak Reaction

An Ultra-precise measurement of the weak mixing angle using Maller Scattering
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Parity Violating Asymmetry (Apv) in Mgaller Scattering

» Measure Apy, in the scattering of longitudinal polarized electrons off
unpolarized electrons:

Op — Oy,

APV — Interference between

electromagnetic and weak

/ neutral current amplitudes

A = N > I Gp 4sin“Orpp ,
PV — 12— m Q

\/Eﬂa (3 + cos?Ocop)? v

Derman and Marciano (1978)

0R+UL

Weak charge 0cl=1— dsin2l O Weak Mixing
of electron W Angle

Predicted Apy, ~ 33 ppb
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Tree Level Feynman diagrams for Mgaller
scattering

The aim is to measure Qy, to an
overall fractional accuracy of 2.3%.
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Previous Weak Mixing Angle Measurements

Low Energy Measurements

+ APV: Atomic Parity Violation 133Cs (1997)
+ PV Moller Scattering
« SLAC E158 (2002 - 2003) limited statistics
- Next generation: MOLLER (factor of 5 better)

+ PV Elastic e-p scattering: Qweak (JLab 2018)

+ Neutrino Deep Inelastic Scattering: NuTeV
(FermiLab 1999)

O
Measurements near Z~ Pole
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+ SLC at SLAC (1994-95) and LEP at CERN (1992): ete- colliders

- High precision measurements
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MOLLER goal
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MOLLER Apy would be the first low Q* measurement comparable to the high-precision measurements near Z-pole.
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High Experimental Impact

« Search for new physics by looking for deviations from Standard Model predictions.

 Very precise experimental goal and the low energy scale of the reaction results in a remarkable
sensitivity to probe TeV-scale dynamics.

5(Apy) ~ 0.8 ppb — §(Q%) = 2.1 (stat.) + 1.0(syst.) %

A 1 246.22 GeV

VI9kr — 921 \/\/iGF\AQ%/| V/0.023Q5,

Best Contact Interaction reach for leptons at low OR high energy

To do better for a 4-lepton contact interaction would require:
Z factory, linear collider, neutrino factory or muon collider
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The MOLLER Apparatus

Main Integrating
Detector

Tracking
Detectors

Downstream
Toroid

LH2 Target Upstream
(125 cm long) Toroid

« 11 GeV beam
- Mgaller rate at 65 uA ~ 134 GHz

Acceptance Defining + <Q%> ~ 0.0054 GeV?
Collimator (7 fold » Run time: 344 PAC days (~ 3 years)

symmetry)
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Modes of Data Taking

Counting Mode

* L ow Beam current Calibration runs

- Essential for Kinematic verification
- Studying the response of Main Detector to
scattered electron kinematics.

- Scattered electron rates sufficiently low to
allow for individual electron counting.

Integration Mode

 Operating at full beam current

- Essential for Mgller asymmetry
measurement.

- High electron rates in the Mgiller ring
reaching up to 1 MHz/mm?2

- Counting individual electrons not possible.
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Tracking system will give a much finer grained view of radial event distributions at focal plane
compared to main detectors — good for detailed check of background/optics expectations
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LH2> Target

- Largest LH2 target ever built!

* [rreducible backgrounds: Radiative e-p elastic and inelastic scatterings,
relatively well understood

- Target designed using Computational Fluid Dynamic Simulations to meet the

requirements.

Target Beam
Cell Length 125 cm | o, E 70 pA, 11 GeV
Cell Thickness > 8.4 g/cm?2 Raster area <25
Al windows in beam <0.25 mm Beam Spot >100 um
p, T (cold) 35 psia, 20 K Helicity Flip Rate 1920 Hz
8, Acceptance 5-20 mrad, 21 CeLL?Li;gannr::leent 0.5 mm
LH2 pump flow <251/s
Target Power 4500 W Max Beam Power 3200 W
LHZ2 density reduction < 1% @ 70 uA
LH2 density fluctuations ép/p < 30 ppm @ 960 Hz
0.6x Qweak 6p/p @ 1.5x beam power
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Precision Collimator System

G 4sin’0
Apy = mE F COM 0,
v 2ra 3+ cos*Ocoy)’

- Utilizing the fact that Mgller scattering is
identical particle scattering.

- Accepting Mgaller scattered electrons
around B.,,, = 90° where the asymmetry
IS at a maximum.

- The odd number of coils allow for 100%
acceptance by always detecting one of
the electrons involved in the scattering.

- COM Angles : 60° -120°
-11GeV in; ~2 - 8 GeV out
-50% azimuth, 100% acceptance!
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Spectrometer Concept

Map contours: B
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Non-uniform axis scaling

Downstream Toroid

Upstream Toroid

Simulations performed by the spectrometer group (Juliete et. al.)
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Detector Plane

Major Backgrounds: ep elastic and inelastic scatterings in the
target.

Two back to back toroidal magnets (upstream & downstream).

Focus Moller electrons from full acceptance (~ 2-8 GeV) to tight
radial locations on the main detector.

Provide kinematic separation between Mgller and Mott-scattered
electrons at the main detector.

10

June 18, 2025



Spectrometer Components

DS Enclosure

TM-1 Complete

SC-4 Coll

*Pictures from Michael Dion’s talk at 2025 MOLLER Collaboration Meeting
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Tracking Detectors

 Four layers of Gas Electron Multipliers (GEMs) in each of the seven sectors.

- Mounted on a pair of rotating support wheels to allow measurements of the full
azimuthal acceptance.

- Used in low beam current measurements (counting mode).

dr dg

- Measure the track positions r and ¢ and also the directions r’ = a’_ and @' = d_
< <

7 modules per layer and total of 4 layers.

Readout Support Frame Tracking

\ “Parked” position Measurement
\} ‘\‘\‘
\\\\ \ \\v\\‘y‘

position

Honeycomb
structure

GEM support frame

Cathod frame \ _

Honeycomb
structure

Spacer frame \
GEM support frame 1 \
GEM support frame 2 \

SBU_PROTO_1

James Shirk, Brynna Moran

\eadout
GEM foil 2

Spacers Wit e .
\ GEM foil 3 GEM foil 1

Cathod foil
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Goals of Tracking Detectors

- Determine the average kinematic factor and it’s

: : < collimator and thin C
associated uncertalnty foil targets
Apy Gp 2y(1 —y) E’
KF = 0 = n, Ebeam A A y =
w \/EJZ'C( 1 +y + (1 T y) Ebeam

. Verify the acceptance of the toroidal spectrometer.

- Measure the position dependent light-output response of
the quartz detector.

Goal: Measure KF to a fractional accuracy of less that 0.5%

Vassu Doomra 13

Requires a sieve

Sieve Collimator

e

IR: 26.5 mm
OR: 98 mm
Thickness 100 mm

Holes Diameter: 5 mm
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Main Integrating Detector

Thin Quartz (224) GEM

- The Main integrating detectors measure the physics asymmetry 6-ring Cherenkov detector Modules (28)

for Mgller scattering as well as for the background processes.

« Radiation hard fused-silica Cherenkov detectors with radial and
azimuthal segmentation.

. Total of 6 rings and 224 detectors.

- 84 detectors in Ring 5 and 28 in each of the other rings.
- Covers a radial region between 60 - 110 cm.
- The Mgller asymmetry measurement will occur in Ring 5.

—

L

,ig & % -~

Fa
Shower-Max

Quartz Crystal: Brynne Blaikie’s Talk at MOLLER Collaboration meeting 2025 Detector (28)
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Shower-Max Detector

Shower-Max Detector is a quartz-tungsten
Electromagnetic Calorimeter.

. Intercepts the same scattered electron flux as the
main Mgller Ring 5

, , Closed
» Provides a supplemental energy-weighted

measurement of the Mgller signal with less

sensitivity to hadronic background.
Open

 Total 28 modules in 7 septants

Closed

= -~ o o

Fig: Int det system with Showermaxring in the
beam downstream (front in the picture)

e-p peak flux

Image Courtesy: Sudip Bhattarai

Vassu Doomra o 15 June 18, 2025



Pion Detector

Pion
detector
PMT

Pion Detector is a Lucite Cherenkov detector.

« Downstream of both the MD and the Shower-max detector behind a Pb
absorber donut (to range out the Mgller electrons).

Pb “donut”

- Will determine the hadronic asymmetry (in integration mode) and the
dilution (in the counting mode).

- Pion detectors encased in Pb donut to largely range-
out Moller electron signal (45 X;)

- 28 identical acrylic detectors (7 cm deep, 21 cm
wide, 2.54 cm thick). Each read out by single PMT

pion donut Pb

Image Courtesy: David Armstrong
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Irreducible Background Deconvolution

Rate weighted Radial distributions e/x E>1 MeV for open region f*Asym weighted Radial distributions e/x E>1 MeV for open region
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Plots From Zuhal Seyma Demiroglu

- Deconvolute the signal from the background using the segmented detector plane
- Elastic ep: ~10% of the signal, asymmetry is well known

- Inelastic ep: < 0.3% of the signal but asymmetry is ~20x larger, not well know,

- The inelastic contribution is prominent in Rings 3 and 4, will be measured there.
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Experimental Measurement of Ap,,

. Flux-integration technique for measuring Apy, A |
etector Signal

- The response of the quartz detectors is proportional to the scattered flux. Helicity States

- The scattering asymmetry is measured for a pair of windows with right-(left-)
handed polarization as

N
Corrected for helicity A raw Fp—F} AF < A>S = i ZA'MW
l

N
— N

correlated beam fluctuations i Fo.+F, OF

l l

Asymmetry contribution from other
Corrected due to background sources and their dilutions
spectrometer acceptance

Apy = A Am
O LR -y ) Ar-h

- | / \

Beam Polarization A False Non-linearity
Asymmetry term correction
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Summary

- High precision test of electroweak theory in a low-energy setting.
-Can help resolve discrepancies in Sinzé’W measurements.

« We are about 70% complete with construction so it’s about time to have ERR2
(scheduled for the end of July).
-Target part of the review will happen at a later date in the Fall.

- EER3, will allow us to turn the equipment on and take data, tentatively scheduled
for Aug, 2026.

« We are less than 2 years away from having physics data!
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Transverse Polarization

Transverse polarization analyzing power with azimuthal segmentation.

Moller E'vm‘x Distributions
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Average transverse asymmetry
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For Identical Particles, the magnitude of asymmetry
must be odd around 90 degrees in the center of mass.



Higher-Order Radiative Corrections

- The tree-level electroweak theory prediction for the weak charge of electron is modified even at the 1-loop level.
- Bw becomes dependent on the energy scale at which the measurement is carried out.

- Hard radiative corrections involving the massive vector bosons at the loop level modify the tree-level prediction quite significantly.
Czarnecki and Marciano (1996) [arXiv:hep-ph/9507420]

- The dominant effect comes from the y-Z mixing diagrams.
Czarnecki and Marciano (2000) [arXiv:hep-ph/003049]
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