

PAC 53

### d(e,e'p) FSI Studies

#### Spokespeople: <u>C. Yero\*</u>, W. Boeglin, M. Jones,

#### Theory Collaborators: M. Sargsian, S. Jeschonnek

Jun 17, 2025

Hall C 2025 Summer Collaboration Meeting





# Why study the deuteron ?

- d(e, e'p) ideal for nuclear core studies
  - most simple *np* bound system
     (no 3N forces or additional complications)
  - provides basis for short-range correlations in heavier nuclei (SRCs are deuteron-like)
  - reliable FSI calculations compared to heavier nuclei





# Momentum Distribution



### Probing High-Momentum Structure

- e- scattering off bound nucleon with initial internal momenta,  $\overrightarrow{p_i}$
- reconstructed (undetected) recoil nucleon momenta,  $\vec{p}_r = \vec{q} \vec{p}_f$



### Probing High-Momentum Structure

$$\sigma_{exp} \equiv \frac{d^5\sigma}{dE'd\Omega_e d\Omega_p} = k \cdot \sigma_{eN} \cdot \rho(p_i)$$

 $\sigma_{red} \equiv \frac{\sigma_{exp}}{k \cdot \sigma_{eN}} \sim \rho(p_i) \quad \text{``experimental momentum distributions''}$ 

plane-wave impulse approximation (PWIA)

- no further re-interaction between knocked-out and recoil nucleon
- recoil momentum unchanged,  $\vec{p}_r \sim \vec{p}_i$
- $\vec{p}_r$  can be used to access internal nucleon momentum distributions



### Probing High-Momentum Structure

$$\sigma_{exp} \equiv \frac{d^{5}\sigma}{dE'd\Omega_{e}d\Omega_{p}} = k \cdot \sigma_{eN} \cdot \rho_{D}(p_{i}, p_{r})$$

$$\sigma_{red} \equiv \frac{\sigma_{exp}}{k \cdot \sigma_{eN}} \sim \rho_{D}(p_{i}, p_{r}) \quad \text{"experimental momentum distributions distorted by FSI"}$$
Final-state interactions (FSI):
$$\text{recoil nucleon re-interacts with knocked-out nucleon}$$

$$\text{recoil momentum modified,}$$

$$\vec{p}_{r} \neq -\vec{p}_{i}$$

$$\vec{p}_{r} \underbrace{\text{cannot}}_{p_{r}} \text{ be used to access internal nucleon momentum distributions}}$$

$$\vec{p}_{r} \neq -\vec{p}_{i}$$

### Controlling Final-State Interactions



Boeglin et al. (Hall A) Phys.Rev.Lett. 107, 262501 (2011)

K. S. Egiyan et al. (CLAS) Phys. Rev. Lett. 98, 262502 (2007)

### Controlling Final-State Interactions



Phys.Lett.B60949





#### VNA Theoretical Framework

- only *pn* → *pn* transitions (non-nucleonic transitions explicitly excluded)
- accounts for relativistic dynamics of  $\gamma^*N$  and FSI (GEA)
- initial-state deuteron w.f. is *non-relativistic*

#### Virtual Nucleon Approximation (VNA)

treats the bound nucleon as off-energy shell and uses deuteron w.f. which accounts for baryonic number conservation



**NO** theoretical calculation is able to reproduce the data above  $p_r \sim 750 \text{ MeV}/c$ 

Inelastic  $\Delta \Delta \rightarrow np$ transitions inside deuteron expected to become dominant above  $p_i \sim 800 \text{ MeV}/c$ 

1-Body Momentum Distribution for Deuteron's <pn> component – Includes: S, D, and P waves



#### NN Repulsive Core Sensitivity to FSI

![](_page_12_Figure_1.jpeg)

#### NN Repulsive Core Sensitivity to FSI

![](_page_13_Figure_1.jpeg)

### NN Repulsive Core Sensitivity to FSI

![](_page_14_Figure_1.jpeg)

- determine angular dependence of FSI + quantify FSI contributions
- test relativistic limit of the various FSI theoretical models

# looking for a possible signature of non-nucleonic components in the deuteron

- 1. measure angular distribution ( $R = \sigma_{exp} / \sigma_{PWIA}$  vs.  $\theta_{nq}$ ) at  $p_r \sim 800$  MeV/c where non-nucleonic components are expected to become important (already observed an anomaly in this region, see Yero 2020 *et al.*)
- 2. determine at which recoil angle  $\theta_{nq'}$  the ratio  $R \sim 1$  (small FSI) and extract the corresponding reduced cross-sections as a function of missing momenta corresponding to that particular  $\theta_{nq}$
- 3. Compare the reduced cross-section measurements to full relativistic calculations with FSI including **only** the *np* component; exclude non-nucleonic components  $\Delta \Delta \rightarrow np$ , ... etc (use relativistic initial-state deuteron w.f.)
  - (i) if the calculations describe the data, as it does for < 650 MeV/c, then we conclude that the discrepancy was only due to relativistic effects
  - (ii) if calculations do not describe data, then this could indicate the emergence of possible non-nucleonic components inside the deuteron;

the existence of non-nucleonic components will result in a violation of so-called "angular condition", in which case the extracted light-cone momentum distribution of the deuteron will depend on light cone momentum k and its transverse component  $k_{\perp}$  independently

#### This Proposal: Kinematics

| $E_b = 10.55 \text{ GeV}$<br>10 cm LD2 | $p_{ m m} \ ({ m MeV}/c)$ | $	heta_{nq} \ (	ext{deg})$ | $k_{ m f} \ ({ m GeV}/c)$ | $	heta_e \ (	ext{deg})$   | $p_{ m f} \ ({ m GeV}/c)$ | $	heta_p \ (	ext{deg}) 	ext{}$ |                      |
|----------------------------------------|---------------------------|----------------------------|---------------------------|---------------------------|---------------------------|--------------------------------|----------------------|
|                                        | 500                       | 70                         | 8.151                     | 13.14                     | 3.069                     | 44.17                          | calibration setting  |
|                                        | 800                       | $49 \\ 60 \\ 72$           | $8.551 \\ 8.151 \\ 7.552$ | $12.82 \\ 13.14 \\ 13.65$ | $2.468 \\ 2.891 \\ 3.516$ | 54.85<br>49.27<br>41.57        | 3 main<br>kinematics |

![](_page_16_Figure_2.jpeg)

#### This Proposal: Beam Time Request

| target                          | $\operatorname{current}_{(\mu A)}$ | $p_m \ ({ m MeV}/c)$                                                  | $egin{array}{l} 	heta_{nq} \ (\mathrm{deg}) \end{array}$ | data-taking<br>(hrs) | overhead<br>(hrs) |         |
|---------------------------------|------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------|----------------------|-------------------|---------|
| LD2                             | 80                                 | 500                                                                   | 70                                                       | 24                   | 2                 |         |
| LD2                             | 80                                 | 800                                                                   | 49<br>60<br>72                                           | 200<br>144<br>160    | 2<br>2<br>2       |         |
| LH2<br>C12/LD2/LH2<br>no target | 80<br>10-80<br>0-80                | ${}^{1}\text{H}(e, e'p)$ elastic<br>target boiling<br>BCM calibration |                                                          | 8<br>2<br>2          |                   |         |
|                                 |                                    | total                                                                 |                                                          | 540<br>(23 PAC days) | 8                 | 548 hrs |

#### We request a total of **548 hrs (23 PAC days)**

#### Projections: FSI / PWIA Angular Distributions

![](_page_18_Figure_1.jpeg)

#### Projections: FSI / PWIA Angular Distributions

![](_page_19_Figure_1.jpeg)

only statistical uncertainties

#### Estimated Uncertainties

#### Statistical: $\leq 10\%$

#### Systematics:

Normalization:  $\sim 3 - 4\%$  (BCM calibration, DAQ dead time, target boiling, proton absorption) kinematical:  $\leq 6.5\%$  (beam energy, spectrometers momentum/angle)

Our previous d(e, e'p)n measurements at Hall C (Yero 2020 *et al.*), covered the same range of missing momentum as that presented in this proposal (~800 MeV/c), in which the **major sources of systematic uncertainties were well below 10%**. We expect overall systematics to be similar in this proposal, given the similarities in both kinematics and small coincidence event rates (< 1 Hz)

# Conclusion

This experimental proposal main objectives are:

1. determine and quantify the angular dependence of FSI at recoil momenta ~800 MeV/c, where non-nucleonic effects are expected to emerge in the ground state of deuteron wave function

2. test the relativistic limit of various FSI theoretical models

#### Novelty of this Proposal:

The novel results of this proposed experiment will be a determinant factor to obtain a signature of non-nucleonic components of the deuteron, as isolating the momentum distribution of the deuteron without effects of final-state interactions at different neutron recoil angles is a pre-requirement

## Thank You