Al/ML in CLAS12 Track Reconstruction

Future of experiments with Al/ML
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Manual Scanning and Digitization:

In the early days of bubble chamber experiments (from the 1950s
through the 1970s), photographs of particle tracks were produced at
a high rate. Each image had to be examined by trained “scanners”
who used optical devices and digitizing tables to measure the
coordinates of the tracks. For many experiments, a single event
(one photograph) could take on the order of 10-30 minutes to
analyze manually. When you multiply that by thousands or tens of
thousands of photographs, it’s easy to see why the overall effort
could extend over many months or even years.
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How Much Data Can You Analyze?

Earth Population in 1984: 4.8 billion

Average rate of processing event (.0008 Hz (events per second)
Earth Population in the age bracket 21-65 years old 56%

The events reconstructed (if everyone joins in) 2,135 kHz
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Evolution of Data Reconstruction

How Much Data Can You Analyze? Modern Advanced chips

Earth Population in 1984 - 4.8 billion Multi-core servers are used (64 cores per node)
Average rate of processing event (events per second) Experiments collected data at 16 kHz

Earth Population in the age bracket 21-65 years old 56% Tracks were reconstructed with a rate of (per core)

The events reconstructed (if everyone joins in) 2,135 kHz

Improvement 4 orders of magnitude

>

No significant speedup Age of Al ?

1984

Introduction of Computers into Reconstruction
Computers are used to reconstruct tracks

Experiments collected data at 2 kHz

Tracks were reconstructed with a rate of (per core)
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Detecting Scattered Particles with Drift Chambers

Signals in Drift Chambers (Front View)

Measuring Tracks from the interaction Due to the high intensity of the experiment, the drift chambers
The particle tracks are measured in Drift Chambers (DC), detect many signals. Some are part of a track and some are noise.
embedded in a magnetic field. By measuring the curvature of ~ Data processing procedure must identity which hits are traces of a
the track the momentum (speed) of the particle 1s calculated. particle.

® o
.: .. oo Segment Finding

FTOF \ EC & PCAL

scattered
electron

» Find segments in each super

layer (remove noise)

» Combine 6 segments (one from
each super layer) to make a list
of possible tracks

> |dentify correct combinations of
segments that represent a track

Track Candidate Finding
Drift Chambers The track candidate identification is done using segment positions in 6 superlayers
There are six drift chambers surrounding the interaction point. Each as input to the network as a vector. (There are 112 wires in each layer)
drift chamber consists of six sections, each section contains six layers
of wires. Y V = [Wcla Wc27 W037 Wcéla Wc57 Wc6] , Wcz’ — [1 — 112]
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Using Artificial Intelligence in Reconstruction (De-Noising)
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techniques to reduce or eliminate noise in images = a0 - ® Noise reduction efficiency
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Using Artificial Intelligence in Reconstruction (Track Classifier)

Output Layer
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» A Neural Network is trained to recognize patterns of sesgment combinations Negativel

» The track classifier assigns a probability that the track candidate is positive, negative, or a false track.

» The network is trained on reconstructed data where the right combinations are already found, and

false combinations of segments are generated by interchanging clusters from a different track Positive

» Conventional tracking takes ~250 msec (~4 Hz) per event to classify the right track candidates
(fitting through the magnetic field)

Predicted Class

> The Al identifies correct cluster combinations at a rate of ~8 kHz (depending on the number of False
combinations, changes slightly with luminosity)

False Positive Negative
True Class
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Drift Chamber Inefficiencies:

& Inefficiencies in the Drift Chamber can cause missing segments along the
track trajectory

& The cause can be inactive regions of the drift chambers or the segment
finding algorithm

& The conventional tracking package can fit tracks using only 5 segments
with Kalman-Filter

& The classifier network can classify tracks with 6 segments

Prediction Accuracy:
The average prediction of segment position is within 1 wire (0.36)—no significant
dependence on the superlayer.

Inference of missing Segment: u= — 0.058, 0 =0.356
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Auto-Encoder:
An autoencoder is a type of artificial neural
network used to learn efficient codings of
data. The input and output are the same size.

(®\ Using Artificial Intelligence in Reconstruction (Track Classifier)
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Use reconstructed tracks with 6 segments.
Remove one of the segments (random
superlayer) in the input data, and keep it in
the output data. The network learns to predict

the missing segment position.
0
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(8 Track Reconstruction Workflow
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Track Reconstruction Workflow %

Stage 1: Remove hits potentially considered noise Corruption Auto-Encoder

Stage 2: Construct track candidates and classity 6-segment tracks e
. . . . . he 6th d
Stage 3: use corruption autoencoder to predict missing segments 1n the G sement (pseudo seement
5-segment candidates, then run classifier F e F e
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Al assisted Tracking impact

Al-Assisted Artificial Intelligence Approach:
. & s """" t AITk\ : Two parallel reconstruction workflows implemented for CLAS12
' . egmen rac ' . . . . .
/:,[ Al De-Noiser H Eirier H Finder | | The AI workflow uses de-noising and Al track candidate identification
et mm ettt e mememammenn e e eoeoememememanane ' | j from reconstructed segments
Data Track Fitter : . : : . .«
[ The Al-assisted reconstruction results in a ~60% increase in statistics for
! Sﬁg\fg::ﬂ H Track Finder j 3-particle final states

The Al-assisted tracking efficiency degrades slower as a function of
luminosity (beam current)
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Al assisted Tracking impact

Al-Assisted
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Artificial Intelligence Approach:

¢ Two parallel reconstruction workflows implemented for CLAS12

¢ The AI workflow uses de-noising and Al track candidate identification
from reconstructed segments

¢ The Al-assisted reconstruction results in a ~60% increase 1n statistics for
3-particle final states

¢ The Al-assisted tracking efficiency degrades slower as a function of
luminosity (beam current)

-®- conventional (slope=-0.00443)
-A- denoised/ai-assisted (slope=-0.00217)
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(8| Track Parameter Estimation Network

g =—1(0.94,0 = 39.0,¢ = 10.5)

MLP Particle Reconstruction:
A Neural Network to predict particle momentum and directions based on the segments in
each super-layer of the drift chamber.

Output Layer

Momentum )
Polar Angle -
Azimuthal Angle X

o
o

g=+1(2.01,0 = 22.7,¢ = 97.9)

Physics Reactions:
Invariant masses calculated from particles reconstructed by Al, from RAW drift chamber hits.
Reconstruction speed ~24 kHz on a single Laptop.
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MLP Particle Reconstruction
Predicts particle momentum ~2.4%
Conventional Tracking ~0.05%
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(®\ Electron Identification with Al

= CLAS12 Electromagnetic Calorimeter
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AT Position Prediction:
A Neural Network can predict the strip that the track will hit in the Calorimeter
Prediction accuracy ~1.4 strips

18000
Electron Identification: 16000} 3 v view UL B Ve
1 W View 7000 1 W View
& Electrons in CLAS12 are identified using the energy deposited in ECAL o L 6000}
combined with response from High-Threashold Cherenkov Counter (HTCC) B! 50001
and the track parameters. 0o 4000}
& A Neural Network was developed to predict the track’s intersection position 8000F
with ECAL (all 9 layers). 6000F - 30007 |
& The signal from 9 layers was aggregated from the raw ECAL ADC. They used 4000} 2000¢
to train another neural network to classify electrons. 2000} 1000f
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Electron Identification with Al

» PCO' AL Eu Ev Ew & Electrons in CLAS12 are identified using the energy deposited in
’ 7 ECAL combined with response from High-Threashold Cherenkov
- FCIN Eu , EfU , Ew Counter (HTCC) and the track parameters.

& A Neural Network was developed to predict the track’s

s l_' ECOUT [Eu , Efv , Ew intersection position with ECAL (all 9 layers).
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(®\ Electron Identification with Al

Offline Electron Identification:
A cut-based identification algorithm requires the
Fiducial Region: full energy deposition sampling fraction (E/P) for electrons to be >0.21

0.40
Edges: some energy escapes :

o
w
o

I

o
w
o

I

Al Electron Identification Approach:

Train a network to identify electrons in the fiducial region.
Include edge cases in the training sample

Possibly recover some of the electrons outside of fiducial region

¢ Use radiative electrons for Al training 0.10 imbmmmbm b e b b b Ll o
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_ 100,000,000 interactions, 4 hours
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Frequency of specific interaction of electron with nuclei (hypotetical)

1 = /

DVCS Probing The structure of Proton

Physics Reactions:

Electron-proton collisions yield outcomes at varying rates. Each analysis
group focuses on specific event topologies, and the entire dataset must be
processed with conventional methods to 1solate the reactions of interest.

10,000 1nteractions per second
Event Topology Sorting
Processing: 2,000 CPUs

Typical experiment runs for ~2 month (50% efficiency).
Collect ~180 runs (4 hour sessions). Takes 2 months to
process data, making it available for physics analysis.
Requires large data processing facilities.

Production of Mesons

; K
/ 2l e N e N . Y
€ N .- &) %/:: " o o s P
6> -, € p - S Gug X, -

Production of Baryons

Artificial Intelligence Approach:

Fast Al reconstruction identifies tracks and i1solates physics reactions
directly from the raw data stream. This allows the interactions of interest
to be processed using conventional methods much more quickly, providing
scientists with the data they need for analysis.

10,000 interactions per second
Event Topology Sorting
Al on Laptop: 8 CPUs
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Electron Identification
Idnetifies electron tracks by

combining raw data from several
detectors (HTCC,DC,ECAL)

Track Parameter Predictor

Possible

Neural Selected

Trajectories Network Trajector

Particle

V/

electron

Neural Network Predicting Parameters

V Speed
- g 0 Angle
@ Angle

A Neural Network to predict charged
track parameters, momentum and
direction

MLP Track Classifier
Identifies the best track candidates
Constructed by combining segments
in each of the 6 superlayers

Neural
Network
POSSIBLE NEURAL CLASSIFIED
'RAJECTORIES

m

NETWORK TRAJECTORY

_}/

NEURAL NETWORK
CLASSIFYING A PARTICLE TRAJECTORY
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(8 Al Data Processing in Real-Time
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Saving experimental data
Already containing tracks
And physics topologies
Identified by Al
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DIGITIZER

COMPUTER

PARTICLE B
DETECTOR

DATA ACQUISITION FROM

NUCLEAR PHYSICS EXPERIMENT

Streaming Readout:

With the transition to streaming readout, Al tools will play

NEURAL CLEAN
NETWORK IMAGE

De-Noising Auto Encoder
Removes background hits DE-NOISING +—
Works ~350 Hz per CPU core AN IMAGE

a crucial role in data processing. Achieving comparable
efficiency with conventional approaches would be
difficult, especially while handling large data volumes.
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Al Data Processing in Real-Time

\

.: 2 o® : ®  Segment Finding o
@, a0
et ¥ P e ¥ | ~96.5% at 100 nA
(R oo
ssiastecs Lo B .
' ' . b - .- 4. T T _.
> Bit-wise operations to identify segments in !
drift chambers are implemented for online 0.9} \‘
reconstruction ‘N
» Capable of working at DAQ speeds ~3.5 i .
kHz per CPU core 2 v~\
0.8 N
2 ‘N
o .
[ J ® (] qq:: '\
Online Track Identification: F20.7F N
N
The Online track identification relies on a faster and more efficient - A
segment finder 0.6 AN
Track identification efficiency from the raw DC signals 1s higher ' . . \’\.
compared to the offline tracking package. 0.5 & Online Tracking
. . L L V- Conventional Trackin
Ideal for using in real time to identify events and for triggering in Co V.e tdo d ali° 5
streaming readout mode. 0.4+ Denoised/Al Tracking
It will be incorporated into offline algorithms to further enhance track | , | , | , | , | , |

finding efficiency. 0 20 40 60 80 100
Beam Current (nA)
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Conclusions

\

Physics Event Reconstruction in CLAS12:

¢ The Al-assisted workflow (De-Noising CNN, Classifier MLP, and Corruption Recover AE) is integrated with standard
reconstruction software and results 1n a significant increase in statistics (~60% for 3 particle final state)

The improved track efficiency as a function of beam current allows running future experiments at higher luminosities, which
can result in significantly more statistics for the experiments.

The track reconstruction software speed improvement 1s ~30%

The online reconstruction using only Al 1s capable of tagging physics reactions at speeds comparable to Data Acquisition
(DAQ).

Work 1s ongoing on implementing Al reconstruction as a Level-3 trigger with an electron identification Al network (work in
progress)

The Al approach to reconstructing tracks and identifying particles (electrons for triggering) is crucial for transitioning to
streaming readout.

Artificial Intelligence will change how experiments are conducted and lead to shorter times from data collection to paper
publications.

€

€C

€C

€C

€«

€C

The Implementation:

AN
@ DEEP NETTS

CLAS12 reconstruction software 1s a Service-Oriented-Architecture (SOA), running in Java, reconstruction and monitoring
software 1s Java-based.

The Al trackfinder 1s implemented 1n Java using DeepNetts Machine Learning library, for easy integration with reconstruction
software.
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Thank you....
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> An auto-encoder is composed of an encoder and a decoder sub-models.

The encoder compresses the input and the decoder attempts to recreate
the input from the compressed version provided by the encoder.

> Typically used for de-noising, but can be used for fixing glitches (our

case).

Input Output
g, IF TensorFlow
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> The network Predicts the missing cluster position
with a precision of 0.36 Wire
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(@ Corruption Recovery Auto-Encoder

» Use Auto-Encoders to fix the missing cluster (provide a position)
> @Good reconstructed tracks are used to generate training samples by removing one

cluster from each super layer
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Java In Nuclear Physics

Different language bindings to present user engines
in C++, C, Fortran, Java, Python..

Reacts to:

— Streaming-unit (message-driven and
responsive)

— Service failure (resilient)
— Variable load conditions (elastic)

Provides multi-threading:
— Non blocking processing
« Threads don't block on async execution
— Task oriented orchestration

« Can be altered dynamically based on
running conditions

Graphical application representation and design

Data Processing From The Experiment:

CLAS12 Experiment Data Processing uses CLARA (SOA based Architecture)
Entirely written in Java

Allows running a Modular application on heterogeneous platforms
Deployable to Computing Data Centers

G. Gavalian, Hall A/C Collaboration Meeting (June 17, 2025)

CLARA Overview: A reactive actor/micro-service-based framework
designed for real-time processing of unbounded data streams at

scale.

Key Features:
* Event-driven reactive actors
* Networked by data pipelines for efficient data transport
* Compositional actors with runtime-configurable conditional

routing

* Based on the flow-based programming paradigm (FBP)
Why CLARA Matters:
* Encourages application design based on software artifacts
* Improves fault isolation
* Easyto embrace hardware and software heterogeneity

* Eliminates long-term commitment to a single technology stack

[s e

Orchestrator

UE

SM

SM

DPS

DPS

DPE

DPE : Data Processing Environment

SM : Shared Memory

DPS : Data Processing Station

Network

- B

DPS

SM
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Particle Reconstruction

Distributions calculated from track reconstruction from

RAW Drnift Chamber hits
Ot Layer Inference speed 96 kHz on a laptop (MacBook M3)
! 11 ' o WK (KT

55 s A > 250 A (1520) 6p — epK (K )
=1 V=
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Using Artificial Intelligence in Reconstruction

De-Noising CNN Auto-Encoder

Input Output
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Retains >95% of hits belonging
to tracks, and removes >90% ot

background hits

T'he Classifier network 1dentifies tracks from segment combinations and
1dentifies track charges. 'The Al-assisted track identification increased
tracking efhciency by 13%-21% (depending on luminosity)
Improvement of the etficiency slope as a function of luminosity.
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Track Efficiency
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Electron Identification with Al

» PCO' AL Eu, Ev : Ew & Electrons 1n .CLAS12 are 1dentified usit}g the energy deposited in
ECAL combined with response from High-Threashold Cherenkov
- FCIN Eu, EfU , Ew Counter (HTCC) and the track parameters.
& A Neural Network was developed to predict the track’s
s l_' ECOUT [Eu, EfU , Ew intersection position with ECAL (all 9 layers).
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