LLRF Workshop 2025 @ Newport News

Multiharmonic enthusiast – Applications of multiharmonic feedback in synchrotrons –

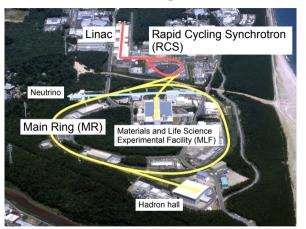
Fumihiko Tamura

Japan Atomic Energy Agency, J-PARC Center

October 2025

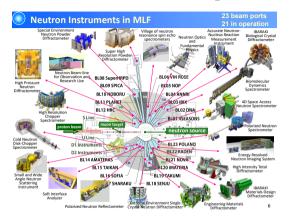
Contents

- 1. Introduction
- 2. Multiharmonic feedback at J-PARC
- 3. Possible applications of multiharmonic FB


Triple harmonic operation Barrier bucket formation Non-integer harmonics

4. Important considerations when using multiharmonic FB

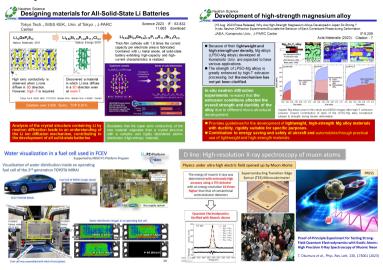
Frequency response of cavity voltage monitor and cable Unwanted voltage jump


5. Final thoughts

Japan Proton Accelerator Research Complex (J-PARC)

- Consists of 400 MeV linac, 3 GeV RCS, 30 GeV Main Ring, and experimental facilities (MLF, Hadron, Neutrino)
- Very high intensity proton beams are used for generation of secondary particles

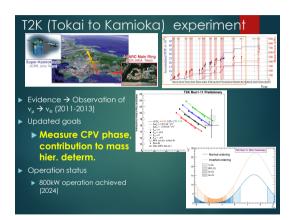
Material and Life science Experimental Facility: MLF



Spallation neutron source and muon source:

Neutron: over 20 beamlines.

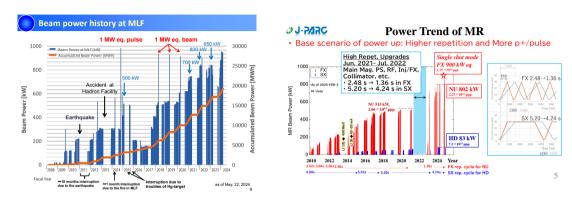
• Muon: four


Only a few of recent outcome from MLF

~500 experiments/year

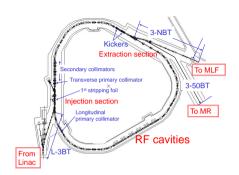
MR beam destination: Neutrino experiments and Hadron hall

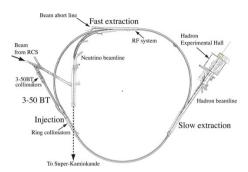
MR beams for particle and nuclear physics.



- Fast extraction (FX) by extraction kickers
- Hyper-K will requires 1.3 MW beam (3e14 ppp)

- Slow extraction during 2 s
- Kaon rare decay, strangeness, µe conversion search, etc...


Beam power history of RCS and MR


Original design beam powers (RCS: 1 MW, MR: 750 kW) have been achieved.

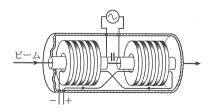
• We are trying to push beam powers higher

RCS and MR: very high intensity synchrotrons

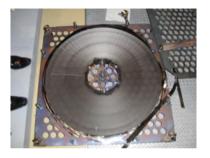
circumference	348.333 m			
energy	0.400-3 GeV			
beam intensity	$8.3 imes 10^{13}$ ppp			
output beam power	1 MW			
accelerating frequency	1.227-1.671 MHz			
harmonic number	2			
maximum rf voltage	440 kV			
repetition rate	25 Hz			
No. of cavities	12			
Q-value of rf cavity	2			

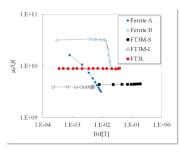
circumference	1567.5 m			
energy	3 - 30 GeV			
beam intensity	$2.5 imes 10^{14} \ \mathrm{ppp}$			
output beam power	(design) 750 kW			
accelerating frequency	1.67-1.72 MHz			
harmonic number	9			
maximum rf voltage	480 kV			
repetition period	1.16 - 5.2 s			
No. of cavities (Fund. + 2nd)	9+2			
Q-value of Fund. rf cavity	22			

Key features of the synchrotrons (RCS and MR)


In point of view of rf, two key features:

High (RCS) and imaginary (MR) transition gamma lattice


- · No transition during acceleration, easy beam handling avoiding beam losses
- Small slippage factor / low synchrotron frequency. Longitudinal beam gymnastics is sometimes difficult

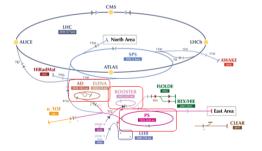

Magnetic alloy (Finemet) cavities

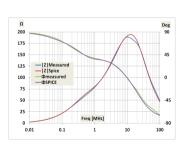
- Magnetic material loaded cavities are used for proton (ion) synchrotrons
- J-PARC synchrotrons employ magnetic alloy instead of conventional ferrite
- Today's main topic

Finemet / Magnetic Alloy (MA) cavity

Magnetic Alloy:

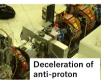
- $B_s \sim 1.2$ T, stable at high rf voltage \rightarrow twice higher accelerating gradient than ferrite cavities is possible
- Very high permeability → wideband

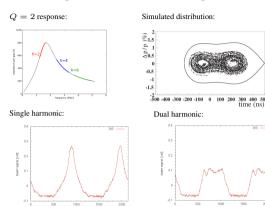

RCS MA cavity: 440 kV /12 cavities, Q = 2


MR MA cavity: 480 kV / 9 cavities, Q = 20, 2nd harmonic 120 kV / 2 cavities

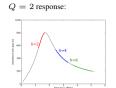
• Both cases, frequency sweep without tuning is possible

MA cavities at CERN

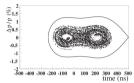

Facilities	Rings	Number of Cavities	Cell per Cavity	Total Voltage	Q-value	Cooling	Core	O.D. of core	Purposes
CERN	LEIR	2	1	8 kV	<1	Direct	FT3M	67 cm	Acc., 2nd
	PSB	3 × 4	2 ×6	24 kV	<1	Indirect	FT3L	33 cm	Acc.,2nd, blow-up
	PS	1	5	5 kV	<1	Indirect	FT3L	33 cm	damper, barrier RF
	ELENA	1	1	500 V	<1	Indirect	FT3L	33 cm	Decel.
	AD	1	5	4 kV	<1	Indirect	FT3L	33 cm	Decel.



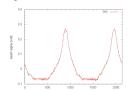
Advantage and disadvantage of wideband MA cavity

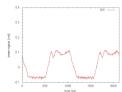

Dual harmonic operation for bunch shaping, where a single cavity is driven by superposition of the fundamental and second harmonic voltages, is possible.

• Indispensable for high intensity beam acceleration, alleviating space charge effects


Advantages can also be disadvantages.

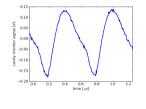
- Wake contains higher harmonic. Multiharmonic beam loading compensation is necessary
- Distortion of tetrode output current appears as cavity voltage distortion


Advantage and disadvantage of wideband MA cavity

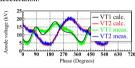

Simulated distribution:

Single harmonic:

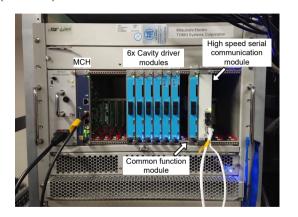
Dual harmonic:

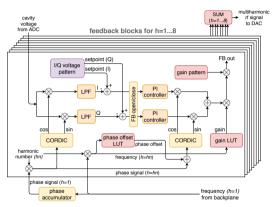

fundamental and second harmonic voltages, is possible.

• Indispensable for high intensity beam acceleration, alleviating space charge effects


Dual harmonic operation for bunch shaping, where a

single cavity is driven by superposition of the


Anode voltages at 1 MW beam acceleration:

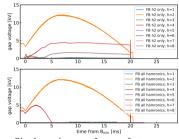


Advantages can also be disadvantages.

- Wake contains higher harmonic. Multiharmonic beam loading compensation is necessary
- Distortion of tetrode output current appears as cavity voltage distortion

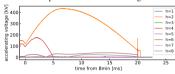
Multiharmonic vector rf voltage control feedback in new RCS LLRF (2019–)

(Phys. Rev. Accel. Beams 22, 092001, 2019)


Eight classical I/Q feedback blocks for harmonics (h1...h8).

- LPF design is the key: Tracking CIC + leaky integrator
- Phase offset LUT and gain LUT for wide frequency range (0.4-6.8 MHz)

Performance of multiharmonic feedback with 1 MW beams


Preliminary test with a single cavity

Harmonic components of cavity gap voltage:

Tests with 12 cavities

Harmonic components of vector-sum voltage:

https://doi.org/10.1109/TNS.2019.2899358,

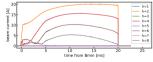
https://doi.org/10.1103/PhysRevAccelBeams.22.092001,

https://doi.org/10.1016/j.nima.2021.165211

2000 0 200 400 600 800 1000 1200 1400 1600 1800 time [ns]

Single cavity test: Just perfect.

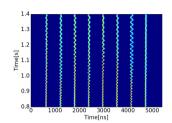
Wake voltages of 4.6 kV (h4) / 1.7 kV (h6) suppressed by FB below 300 V

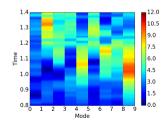

We need compromise for 12 cavities.

- h78 FB disabled for all cavities. h6 disabled for 7 out of 12 cavities. Because of HLRF trips
- Unwanted h6/h8 clearly seen in vector-sum voltage, 40/25 kV

Harmonic components of beam signal:

Mountain plot of beam signal:

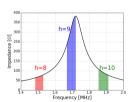

4000



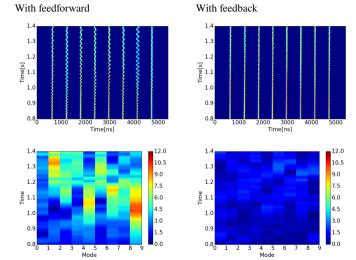
Although compromises were necessary, stable beam acceleration was

Similar multiharmonic FB deployed in MR: CBI suppression

With feedforward

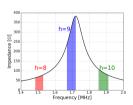


Above 450 kW, coupled bunch instabilities observed in MR.

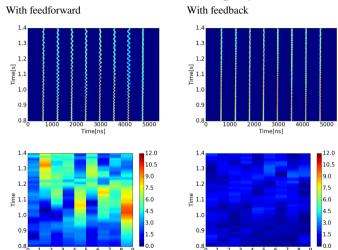

- · CBI limited the available beam power
- Impedance of Neighbor harmonic (h8, h10) is the source of CBI. Mode 1 and 8 are dominant

With multiharmonic feedback, wake voltages of h8/h10 and the coupled bunch oscillations are suppressed.

For both RCS and MR, multiharmonic FB serves high intensity beam acceleration.

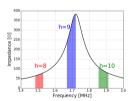

Similar multiharmonic FB deployed in MR: CBI suppression

Above 450 kW, coupled bunch instabilities observed in MR.


- · CBI limited the available beam power
- Impedance of Neighbor harmonic (h8, h10) is the source of CBI. Mode 1 and 8 are dominant

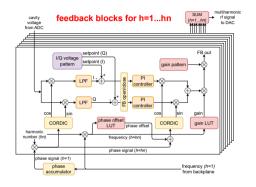
With multiharmonic feedback, wake voltages of h8/h10 and the coupled bunch oscillations are suppressed.

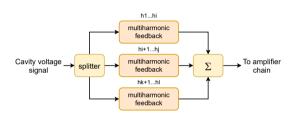
For both RCS and MR, multiharmonic FB serves high intensity beam acceleration.


Similar multiharmonic FB deployed in MR: CBI suppression

Above 450 kW, coupled bunch instabilities observed in MR

- · CBI limited the available beam power
- Impedance of Neighbor harmonic (h8, h10) is the source of CBI. Mode 1 and 8 are dominant


With multiharmonic feedback, wake voltages of h8/h10 and the coupled bunch oscillations are suppressed.



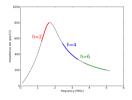
Mode For both RCS and MR, multiharmonic FB serves high intensity beam acceleration.

Mode

Multiharmonic FB is scalable

Number of harmonics is (theoretically) not limited.

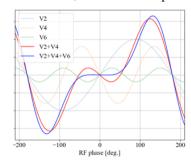
- J-PARC: 8 harmonics / cavity, CERN PSB (Servo loop): 16 harmonics /cavity
- Adding modules is also possible

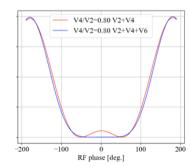

- 1. Introduction
- 2. Multiharmonic feedback at J-PARC
- 3. Possible applications of multiharmonic FB

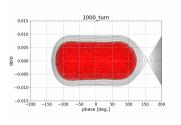
Triple harmonic operation

Barrier bucket formation Non-integer harmonics

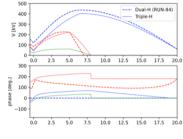
- Important considerations when using multiharmonic FB
 Frequency response of cavity voltage monitor and cable
 Unwanted voltage jump
- 5. Final thoughts

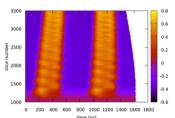

Triple harmonic operation



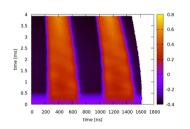

To realize flatter bunch in RCS, triple harmonic operation is considered.

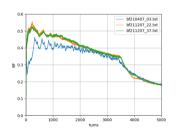
• h6 is covered by the frequency response


With h6, a wide and flat potential can be formed.



Triple harmonic operation: beam tests





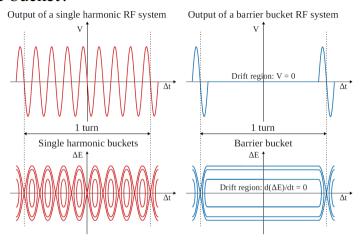
Beam tests performed with 1 MW beams.

- Smoother bunch shape obtained with triple harmonic
- · Bunching factor improved

Because of power consumption, triple harmonic is not yet used for normal operation.

- 1. Introduction
- 2. Multiharmonic feedback at J-PARC
- 3. Possible applications of multiharmonic FB

Triple harmonic operation

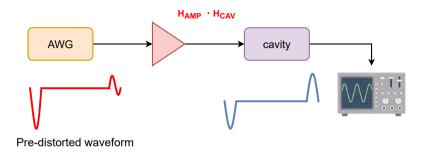

Barrier bucket formation

Non-integer harmonics

- 4. Important considerations when using multiharmonic FB
 - Frequency response of cavity voltage monitor and cable
- 5. Final thoughts

What is barrier bucket?

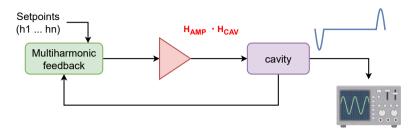
LLRF Workshop 2025



M. Vadai, et. al., EPL, 128 (2019) 14002.

A Barrier bucket voltage has long drift region.

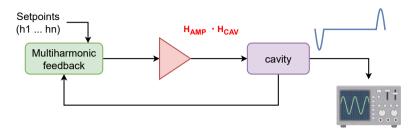
- Preserve a gap for kicker in a debunched beam
- Accumulate intense beam with alleviating space charge effects


Conventional way to generate barrier voltage

A pre-distorted waveform is generated by AWG so that cavity gap voltage is desired barrier voltage.

- Compensate the transfer function of the system $(H_{\text{AMP}} \cdot H_{\text{CAV}})$
- Adjustment is not trivial
- It is difficult to keep voltage under beam loading, because the setup is open loop

Barrier voltage generation using multiharmonic feedback



Multiharmonic setpoints are set to generate barrier voltage.

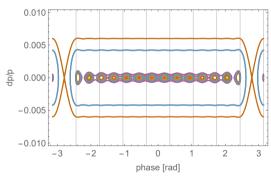
- Relying on the voltage monitor, one can forget about the transfer functions
 - Feedback conditions (phase) must be adjusted for harmonics
- Closed loop. Beam loading and other fluctuation can be compensated

But, how many harmonics are necessary?

Barrier voltage generation using multiharmonic feedback

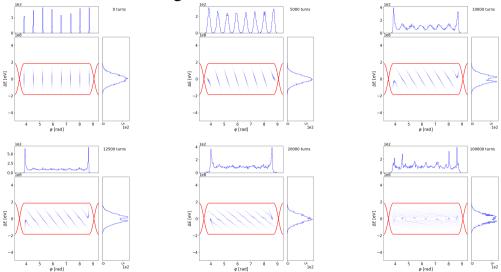
Multiharmonic setpoints are set to generate barrier voltage.

- Relying on the voltage monitor, one can forget about the transfer functions
 - Feedback conditions (phase) must be adjusted for harmonics
- Closed loop. Beam loading and other fluctuation can be compensated


But, how many harmonics are necessary?

Example of multiharmonic barrier voltage

With 16 harmonics, barrier voltage can be generated.

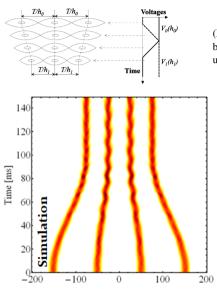

16 is a reasonable number

Barrier bucket example for J-PARC MR, $f_{\rm rev}=192$ kHz, $V_{\rm peak}=\!30$ kV.

• Inner separatrix due to ringing in the drift region seen

Multiharmonic barrier voltage works

Note: MR has no wideband cavity; just consideration.

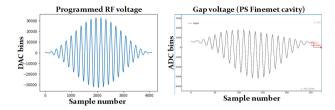

- 1. Introduction
- 2. Multiharmonic feedback at J-PARC
- 3. Possible applications of multiharmonic FB

Triple harmonic operation Barrier bucket formation

Non-integer harmonics

- Important considerations when using multiharmonic FB
 Frequency response of cavity voltage monitor and cable
 Unwanted voltage jump
- 5. Final thoughts

Batch compression


(From Accelerator Handbook) Batch compression is applied to squeeze a set of n bunches into a smaller fraction of the circumference. The number of bunches is unchanged. It can be quasi-adiabatic, preserving shape and emittance of bunches.

Batch compression of lead ion beams from 100 ns spacing to 50 ns is being considered at CERN.

- Selection of harmonics is not trivial
- $h=21 \rightarrow 21 \rightarrow 25 \rightarrow 30 \rightarrow 36 \rightarrow 42$
- Imperfect compression of (inner) bunch pair, even with non-linear voltage programs

Alternative smooth batch compression

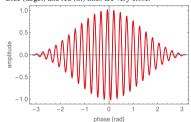
- · Use amplitude modulated non-integer harmonic sweep
 - → Smooth batch compression for all bunches
 - $\rightarrow V_{RF}(t) = V_o \cdot f_{\text{envelope}}(\text{azimuth}) \cdot \sin(2\pi f_{\text{rev}} \cdot h), h \text{ non-integer}$
 - → Works with 4 and 6 bunches

- \rightarrow No handover between harmonics \rightarrow all cavities do the same
- ightarrow Spectral content only at $f_{\rm RF}$ and $f_{\rm RF}$ $\pm f_{\rm rev}$ (half amplitude)

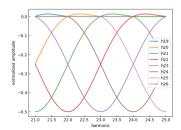
$$V_{\rm RF}(t) = 0.25 \sin[\omega_{\rm rev}(h-1)t] + 0.5 \sin[\omega_{\rm rev}ht] + 0.25 \sin[\omega_{\rm rev}(h+1)t]$$
 h: non-integer

CERN people trying to use non-integer harmonic directly with open loop configuration.

• Is it possible to use multiharmonic FB, which consists of integer harmonics, for this?


Expression non-integer harmonics using integer harmonics

The non-integer waveform can be fitted by up to 5 integer harmonics:


```
INTRODE (* define target waveform *)
       hh = 23.7 (* non integer *)
       usedbucket = hh:
       func = -\sin[hh x] (0.5 - 0.5 \cos[x - \pi])
       data = Join[Table[\{x, func\}, \{x, -usedbucket/hh \pi, usedbucket/hh \pi, \pi/(20 hh)\}]];
       p1 = Plot[func, \{x, -\pi, \pi\}, PlotPoints \rightarrow 10];
       p2 = ListPlot[data, PlotStyle → {Green}];
       starthh = Floor[hh - 1];
       endhh = Ceiling[hh + 1];
       line = Fit[data, Flatten[Table](Sin[nx]), {n, starthh, endhh, 1}]], x] // Chop
       p3 = Plot[line, \{x, -\pi, \pi\}, PlotRange \rightarrow All, PlotStyle \rightarrow {Red}];
       Show[p1, p3, AspectRatio → 1 / GoldenRatio, Frame → True,
        FrameLabel → {"phase [rad]", "amplitude"},
        LabelStyle → Directive [Medium, FontFamily → "Helvetica"]
Outragot= 23.7
Out[892]= -(0.5 + 0.5 \cos[x]) \sin[23.7 x]
OutBORNS -0.0400731 \sin(22x) - 0.360671 \sin(23x) - 0.471644 \sin(24x) - 0.143545 \sin(25x)
```

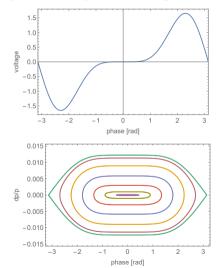
The harmonic amplitudes vary smoothly according to the target harmonics.

Harmonic amplitude to realize non-integer harmonics:

Longitudinal tracking simulation

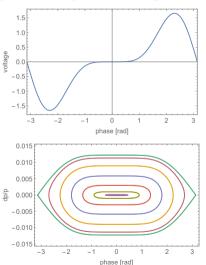
Preliminary longitudinal tracking simulation was performed.

- CERN PS flattop, lead ion, 6 bunches
- Voltage = 20 kV, duration 180 ms
- The bunches move with non-integer harmonic sweep, while the parameters are not optimized yet

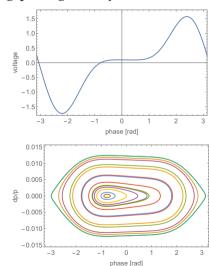

- 1. Introduction
- 2. Multiharmonic feedback at J-PARC
- 3. Possible applications of multiharmonic FB

Triple harmonic operation Barrier bucket formation Non-integer harmonics

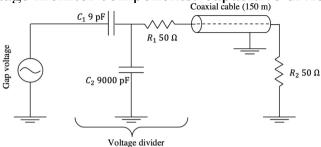
- Important considerations when using multiharmonic FB
 Frequency response of cavity voltage monitor and cable
 Unwanted voltage jump
- 5. Final thoughts


We cannot believe the voltage monitor waveform as is

Voltage monitor signal of nice triple harmonic:

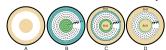


We cannot believe the voltage monitor waveform as is

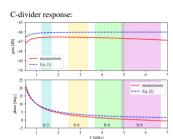

Voltage monitor signal of nice triple harmonic:

Real gap voltage seen by the beam:

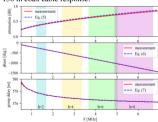
Voltage monitor components: capacitive divider and coaxial cable Coaxial cable (150 m)

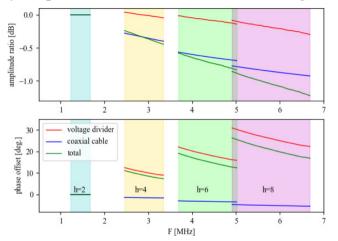

Capacitive divider:

•
$$G_v = 20 \log_{10} \frac{2\pi f C_1 R_1}{\sqrt{1 + [2\pi f (C_1 + C_2)(R_1 + R_2)]^2}} dB$$

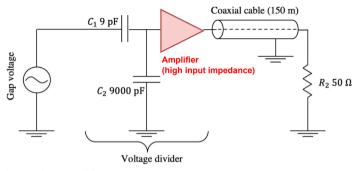

•
$$\phi_v = \arctan \frac{1}{2\pi f(C_1 + C_2)(R_1 + R_2)}$$
 radians

Coaxial cable:


• Due to skin effect, not only attenuation but also group delay varies.


Our operating frequency range (1.2 MHz–6.8 MHz) is in "C".

150 m coax cable response:

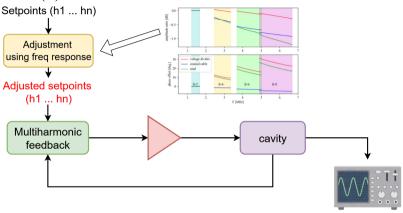


Relative frequency response to fundamental accelerating harmonic

- Relative phase offset: $-\phi_{h_n} + \frac{h_n}{h_0}\phi_{h_0}$
- Details: https://doi.org/10.1016/j.nima.2022.167361

Countermeasure (1)

Replace 50 Ω resister with amplifier:

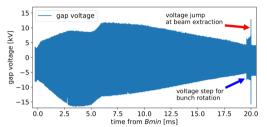

• High input impedance

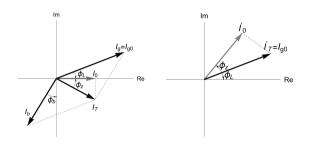
•
$$G_v = 20 \log_{10} \frac{2\pi f C_1 R_1}{\sqrt{1 + [2\pi f (C_1 + C_2)(R_1 + R_2)]^2}} \, \mathrm{dB} \to 20 \log_{10} \frac{C_1}{C_1 + C_2}$$

•
$$\phi_v = \arctan \frac{1}{2\pi f(C_1 + C_2)(R_1 + R_2)}$$
 radians $\to 0$ radian

Frequency response of coaxial cable cannot be modified.

Countermeasure (2)

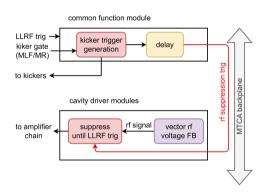



I/Q setpoints are adjusted using frequency response so that the real gap voltage is desired one.

- Beam tests of triple harmonic operation done with this method
- Note: looking at the oscilloscope waveform does not make so much sense. Analysis using frequency response is necessary

Unwanted voltage jump after fast extraction of high intensity beam

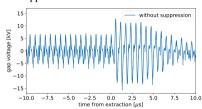
Typical gap voltage waveform with accelerating 1 MW beams:

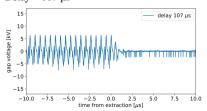


After fast extraction of high intensity beams, voltage jump occurs because of the delay of FB.

- Steady state before extraction: large generator current (I_g0)
- After extraction, beam current suddenly becomes zero. New total current $I'_T = I_{g0}, I'_T > I_T$
- Since the RCS cavity has a very low Q value of 2, the voltage reacts quickly within a few cycles
- $\bullet\,$ Voltage goes to the set value by FB for step response of 10 μs

Countermeasure against voltage jump


One can turn off the generator current when extraction by turning off the rf output.


Kicker trigger is generated by RCS LLRF.

 rf output is suppressed after kicker trigger output with proper delay

No suppression

Delay = 107 us

Final thoughts

The combination of wideband MA cavity and multiharmonic rf feedback has a wide variety of applications.

- Dual or triple harmonic operation
- · Barrier bucket
- Non-integer harmonics for batch compression
- · and more...

One should be aware of frequency responses of voltage monitors.

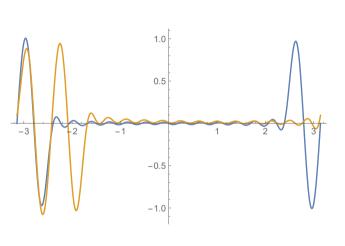
(Not mentioned in presentation) HLRF determines final performance / limits.

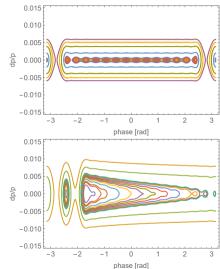
Multiharmonic rf rules!

Final thoughts

The combination of wideband MA cavity and multiharmonic rf feedback has a wide variety of applications.

- Dual or triple harmonic operation
- Barrier bucket
- Non-integer harmonics for batch compression
- · and more...


One should be aware of frequency responses of voltage monitors.


(Not mentioned in presentation) HLRF determines final performance / limits.

Multiharmonic rf rules!

Backup slides

Barrier bucket

