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Industrial Accelerators
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e Legacy systems lack complexity, automation is straightforward

» Single RF structure controlled with a PLL or similar
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e Next generation of industrial systems are increasing in complexity

« Synchronization of multiple structures for higher energy

Wastewater applications

treatment _ . .
» Tighter tolerances on output beams for emerging applications
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Opportunities for Industrial Accelerators

* Focus areas for improving controls
* Improvement of feedback systems for beam stabilization
* Automation of startup routines (calibrations and synchronization)

* Improvement of signal quality for RF systems
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Opportunities for Industrial Accelerators

* Focus areas for improving controls

* Improvement of signal quality for RF systems

Autoencoders for Noise Reduction in RF Signals
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What is an Autoencoder?

e Autoencoder

* Encoder-Decoder network
* Type of neural network ) o
. * Transforms data into a latent space which is mapped
* Transforms data into a latent space and performs a
: to an output space
reconstruction

* Inputs and Outputs are the same: i.e. it is an identity
transformation for a given dataset
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Convolutional Autoencoders

* Neural network that converts |-D sequence into a latent-space
* Filters learn translation invariant features much like an image based U-net
* Pooling layers for downsampling
* Signal is upsampled and filtered to reconstruct the original signal

* Deconvolutional layers can also be used
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Variational Autoencoders

 Variational autoencoders enforce smoothness condition in the latent space
« Dimensionality reduction removes complexity of noise

« Tests done using simulated BPM data

« Logically extended to RF data

« Could implement the autoencoder on a FPGA for near-real-time noise reduction

Minimize 1:(x — X)?
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Cavity simulator

* Based on an equivalent RLC circuit model

° Transmitted voltage differential equation:

Re(V;) w12 —Aw 1[Re(V,) RLml,a"E Re(ffwd)
ELIH(V.:)] [ —ﬂﬂuzl ’Im(Vt] m [Im(ffwd)

o Reflected voltage computed from transmitted:

1 Z
Ve =—Ve == Ifwa
V;: transmitted voltage R; : loaded “shunt” resistance

V..: reflected voltage m: cavity/waveguide coupling ratio

w1/, half band-width I¢yq: forward current

Aw: frequency detuning Z,: reference impedance

A\ radiasoft LLRF 2025

60 -

power [kw]

40 1

50 1
LT D 1
40 | :
I
. — . |
I = 30 - 1 1
:- 2 L
1
1 T 20 I i
--'-ll 3 ] ]

ot 2 ! I

H / 1 10 t :

i\ ' I ]
______ |‘. I"ﬂ-.____ 0 --—-—--—-I Lalde ol 8
T T T T T T T T T T
0 5 10 15 20 0 5 10 15 20

time [us] time [us]

RF Amplifier
’ _ Directional
\( " Couplers
Cavity

Probe

?/17



ML Based Noise Reduction

* Studying the efficacy of autoencoders for noise reduction in RF signals
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Initial studies focused on amplitude data

Compared feed forward, convolutional, and variational architectures with conventional Kalman filtering
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Assessment of FPGA Deployment Pipeline

* Targeting use in a real time pulsed feedback system
* Model pruning - 75% / 80% / 87.5% reduction in weights

* Quantization — int8 / 12-bit / 16-bit / 16x8 quantization schemes

* Optimization of resource usage — test deployment on chosen architecture
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Assessment of FPGA Deployment Pipeline

* Pruning and quantization show some reduction in performance
on bulk figures of merit

* Right: Residual noise power spectra for pruned and quantized models
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Quantization MSE Value IMSE (W - Hz)
Scheme
int8 0.00120 1790000
12-bit 0.00122 1730000
16-bit 0.00121 1780000
16x8 0.000544 1160000
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Assessment of FPGA Deployment Pipeline

* Targeting use in a real time pulsed feedback system

Left: FPGA floorplan for the hls4ml 'Resource’ strategy for an Intl6xInt8 network, with each layer colored. From
input to output of network: red, orange, yellow, green, blue, dark purple, light purple, brown.

= —— ————- —— Resource usage for 16x8 model as
i s e a—— synthesized by Vitis HLS 2024.2 and hls4ml
= — — o
e S SE— Latency Resource ZCU104
— j’ : = =
—= — = = Latency (Cycles) 1042 10004
— Look-Up Tables 245503 106357 274,080
e Flip-Flops 238734 108378 548,160
DSP48E Slices 106 9 728
BRAM (36Kb) 0 23.50 440
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Model based noise removal from RF signals

* Many studies using different
architectures
 CNNs autoencoders
* Vanilla autoencoders
e Kalman filters
* Variational autoencoders

* Difficulty when transferring
to I/Q data

* Moved to transformer
models and modified training
schema

* Variance in test data
optimistic for
implementation in pulse-to-
pulse feedback
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Evaluation of Feedback Performance

* Transformer model tested on simplified RF model — example is outside the training distribution
* 100 waveforms were sent to the transformer with different noise signatures
* Red: peak-to-peak of the input signal

* Blue: peak-to-peak of the transformer output

* PID feedback used to regulate the RF pulse under slow drift

Self-Supervised Transformer Test on Simple RF Model {Variance Test)
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Conclusions

* Industrial accelerators have a large

landscape of applications
* growing demand for industrial systems
* complexity of industrial accelerators is
increasing
* automation is critical when operating outside
the laboratory environment

* Developing ML tools for automation

* Initial studies focused on noise reduction

* Various ML methods show promise for this
application

* Deployment path is taking shape

* Simulated use in feedback systems shows
promise ~65% reduction in error (both peak-
to-peak and standard deviation)
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Disclaimer

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.
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