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Abstract

The EIC Common Platform is a modular system architecture which will serve as the basis for EIC Accelerator Controls. It consists of an
SoC-based carrier board with up to two independent pluggable FPGA-based Daughtercards. Different types of Daughtercards have custom
electronics catering to the specific needs of an application. Daughtercards will have FPGA logic to support a common protocol for
communication with the carrier board as well as a basic set of features for programming and telemetry. RF Controls applications will use two
versions of an RF Digitizer Daughtercard designed by the LLRF team as well as several of the general purpose Daughtercards designed in
collaboration by the LLRF, Accelerator Controls, and Instrumentation groups. The system architectures for various LLRF applications using
the Common Platform components will be presented.
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//!J;(“f/////( Two versions of an RF Digitizer daughtercard are
planned. Both will use the AD9783 dual channel
DAC and AD9653 quad channel ADC, used in the
JLab Digitizer-1 and Digitizer-2 designs, as well
as LCLS-Il and many other LLRF projects. The
difference between the two cards is the number of

DAC and ADC channels on each. Planned

versions are:
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Daughter Site 1

Zynqg Ultrascale+ SoC

Digital I/O Control/Status
Header Zynq UltraScale+ CG (or EG) Family

ZU4, ZU5, ZU7 pin compatible

Dual (or quad) ARM AS3 TDLSite1Tx }

Dual ARM RS real time processor %
192k to 504k Logic Cells i
176k to 461k Flip Flops
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SD Card
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Daughter Site 2
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The initial prototype of the 8 ADC / 2 DAC version
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The EIC Common Platform is a 2U pizza-box,
network-attached device chassis with a common
carrier board and function-specific daughtercards.
This design inherits significantly from the C-AD
LLRF Platform[1]. The chassis power input is
modular and will be supplied by a rack-level 48 V
DC PDU in most cases. Daughtercards include a
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Common Platform Carrier Block Diagram

The block diagram above highlights key features
of the carrier design.
« Xilinx Zynq UltraScale+ FPGA
« Dual (or quad) ARM Cortex-A53 application
processor
 Dual ARM Cortex-R5 real-time processor
* Programmable Logic

of the digitizer, which was just received recently,
iIs shown at right. Performance characterization is
iIn process, with plans for testing on a cavity in
2026. The firmware design leverages many
existing components from the JLab and BNL
LLRF systems, as well as common daughtercard
components already developed, speeding the
system integration process.

Timing Data Link HSR 24.6 MHZ Cavity Controller

8 ADC / 2 DAC RF Digitizer Daughtercard
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communication between systems. Daughtercards
include a common backend based on a Xilinx
Artix UltraScale+ which provides the carrier
interface and application logic.

multiple clocks to the carrier and daughter sites.
An integrated DDS, using the AD9783 DAC, can
generate two beam-synchronous clocks.

HSR 24.6 MHz NCRF Cavity Controller

ESR 591 MHz 1-cell SRF Cavity Controller

Two examples of the system configuration for cavity controllers are shown in the figures above. The
HSR 24.6 MHz cavity configuration on the left is representative of low-frequency NCRF systems (24.6,
49 & 98 MHz). These will use direct sampling on the ADC and DAC. The figure on the right shows the
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ESR 591 MHz 1-cell SRF cavity configuration. This cavity has two FPCs driven by independent 400 kW
solid-state amplifiers. Higher frequency systems will use up and down conversion with ADC IFs around
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Carrier Clock Sources

Firmware & Software Interfaces
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AXI Chip2Chip Bus Carrier/Daughter Interface

EPICS

A memory mapped interface between the carrier
Zyng processing system and the daughtercard is
iImplemented using the AXI chip2chip bridge over
an Aurora serial link. This gives the carrier low-
bandwidth AXI4-Lite master access to read/write
to the daughtercard register interfaces. The
daughtercard implements a high-bandwidth AXI4
master interface for DMA transfer of
measurements and other data.

The firmware development process is utilizing the
FPGA Firmware Framework (fwk) developed by
the DESY MSK group[3]. This standardizes the
FPGA development process, promotes modular
and reusable designs, and includes it
integration. The DesyRDL tool also provides a
standardized register definition and interface
method and generates output files to simplify the
software interface development.

Electron-lon Collider

cs-Studio (on eiclino2.eic.bnl.gov)
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Control System Studio Interface Screen

EIC is transitioning from the locally developed
Accelerator Device Object (ADO) based control
system, used in RHIC and its injectors, to the
widely used, open source, EPICS [4] control
system.

The interface from the carrier board to an EPICS
|OC is using the Portable Streaming Controller
driver (PSCDrv) [5]. This development effort has
been greatly advanced by collaboration with
colleagues from the NSLS-II who have been
using this interface for many years.

An example of an interface screen for carrier
telemetry data and basic daughtercard interface
control is shown above.
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24 MHz and DAC IFs generally in the 120 to 150 MHz range. These IF frequencies are in a similar
range to those used previously at BNL and on other projects (LCLS-Il, for example). The 197 MHz
systems will use down conversion for the ADC with direct sampling on the DAC.

The resonance and interlock chassis leverages the extended carrier and digital IO daughtercard
Common Platform components along with custom breakout and signal conditioning boards to interface
to the many devices and |0 standards required for this application. The extended carrier provides an
interface for an external daughtercard to an existing Common Platform carrier board over a point-to-

point fiber link.
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HSR System Controller Block Diagram
The system controllers handle necessary References

machine-level tasks, including implementation of
the RF beam control loops for the HSR,
synchronization of machines for beam transfers or
collision cogging, and other functions. The system
architecture for implementing these beam control
and synchronization requirements is similar to the
approach used in RHIC and its injector complex.
An additional function of the system controllers for
EIC is to provide compensation for long-term
phase drifts. Porting of the RHIC system
controller software to run on the Common
Platform is in progress.
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FPGA Firmware Framework Documentation,

hftps://quafw.paqes.desv.de/docs-pu b/fwk/index.html
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The Experimental Physics and Industrial Control

System, https://epics-controls.org/

The PSC Driver,

htips://mdavidsaver.qithub.io/pscd rv/
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