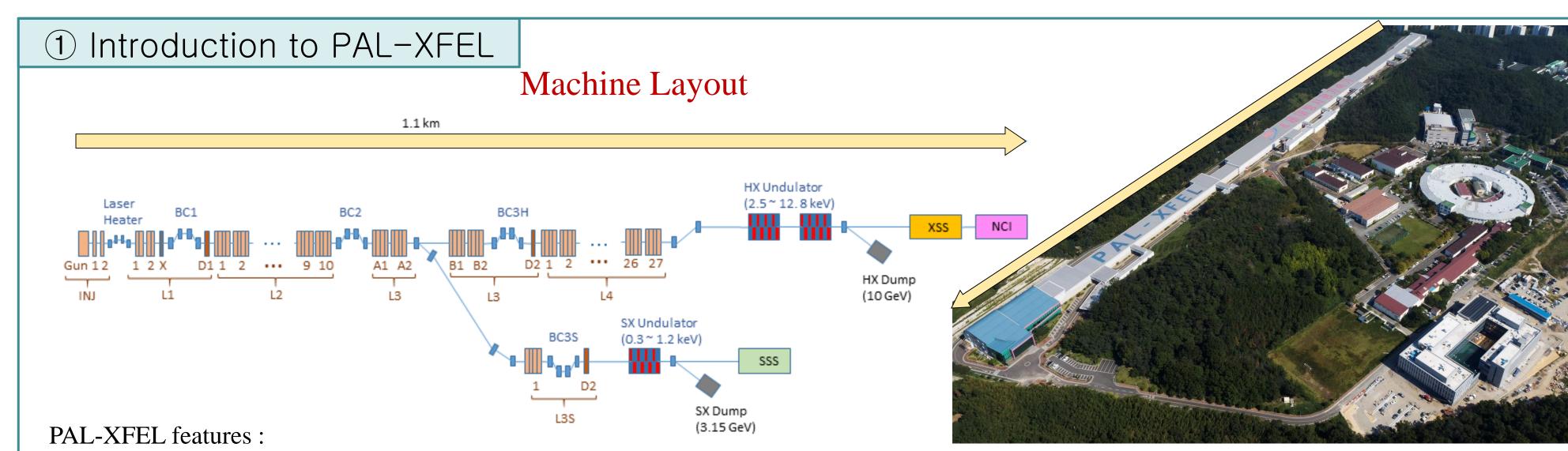


Reliable operation of PAL-XFEL LLRF

Oct. 12-16, Newport News, VA, USA

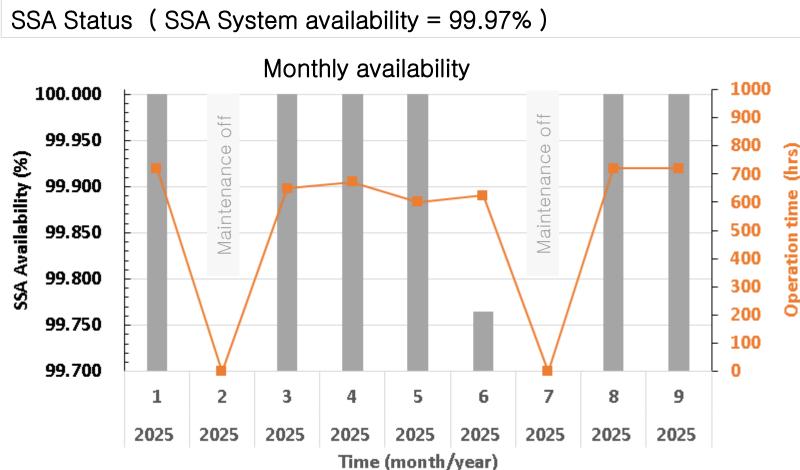

Jinyul Hu[†], Chang-Ki Min, PAL, POSTECH, South Korea

Poster

† hjy@postech.ac.kr

Abstract:

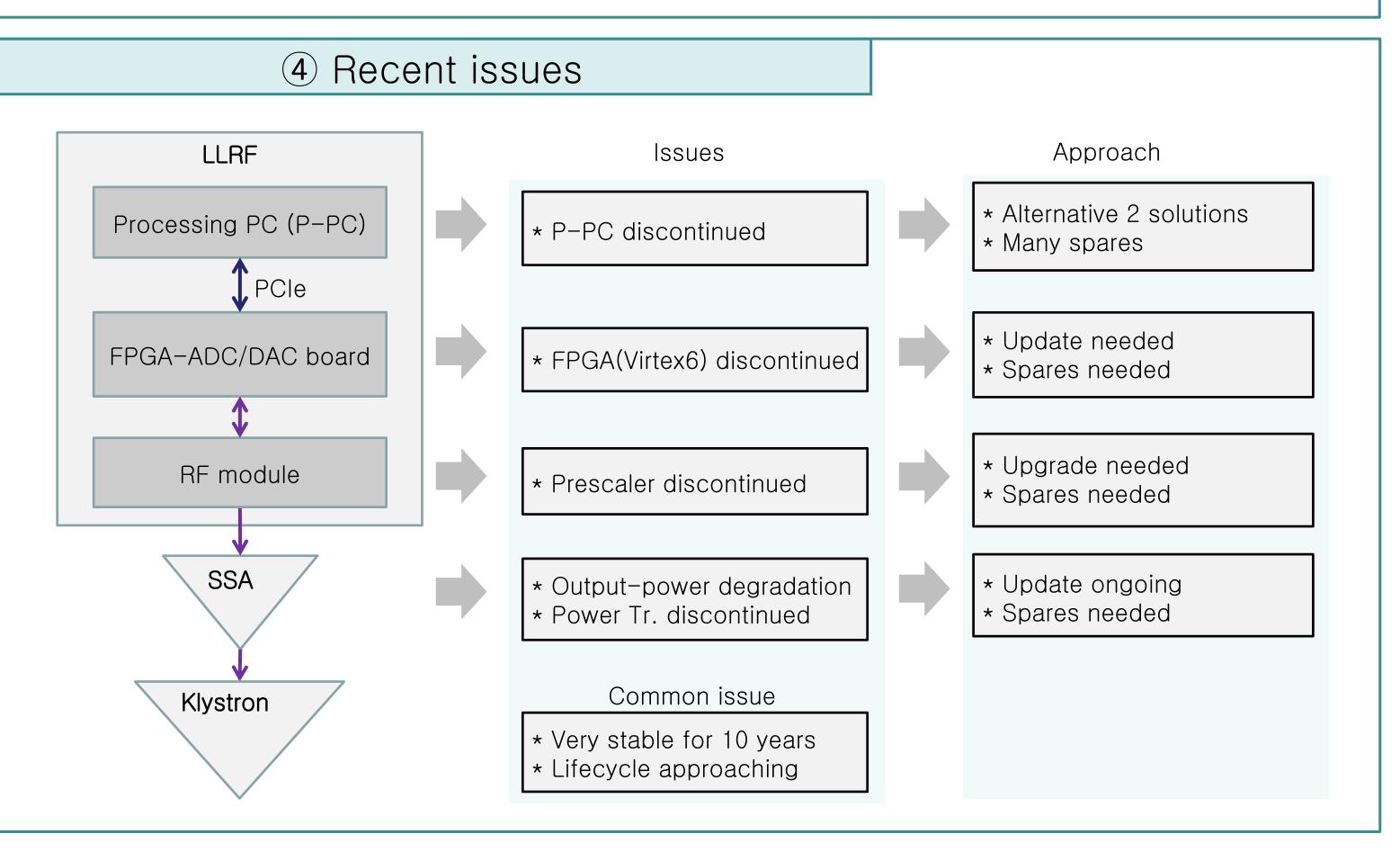
The PAL-XFEL(Pohang Accelerator Laboratory X-ray Free Electron Laser) LLRF(Low Level RF) and SSA(Solid State Amplifier) systems have contributed to the stable operation of PAL-XFEL for nearly a decade with their reliability and robustness. Key achievements of these systems include the development of pulse-by-pulse real-time RF switching function for simultaneous operation of the HX and SX beamlines, development of a converter-type X-band LLRF, and development of a function to improve RF amplitude drift. The systems have faced various challenges during their operation, such as the arrival of key component life cycles, the discontinuation of key components, and the need for upgrades to keep pace with technological advances. Therefore, the following activities are being pursued. The PAL-XFEL LLRF and SSA systems have been field-proven, so upgrades are being carried out based on the existing systems. The discontinued processing PCs have been upgraded to higher-performance industrial boards, the RF modules are being redeveloped, and the A/D and FPGA boards are planned to be upgraded with new FPGAs and PCIe. In addition, an updated SSA prototype is in development.


- S-band Normal-Conducting linac (2.856GHz x50, 11.424GHz x1) → total 51 RF stations (51 sets of LLRF / SSA / HV modulator / Klystron)
- Electron-bunch acceleration 10 GeV at up to 60Hz - 2 Beamlines: One for hard X-ray (HX), the other for soft X-ray (SX) (HX: 2~20keV, SX: 0.25~1.25keV, 2021 update)

2 PAL-XFEL LLRF & SSA Status (2025)

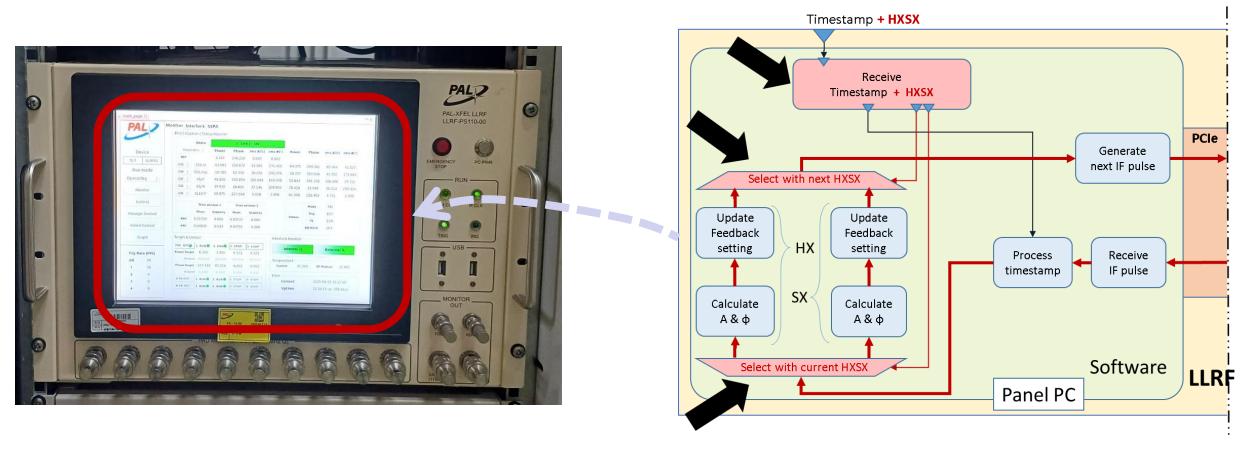
Cause of Failure (total 7 cases, all recoverable) No. RF station Failure Treatment L2-07 P-PC frozen P-PC reboot L4-3 P-PC frozen P-PC reboot LAN LAN L4-8 bad connection reconnection L4-10 P-PC frozen P-PC reboot L4-15 P-PC frozen P-PC reboot L4-16 P-PC frozen P-PC reboot L4-22 P-PC frozen P-PC reboot

※ P-PC := Processing PC

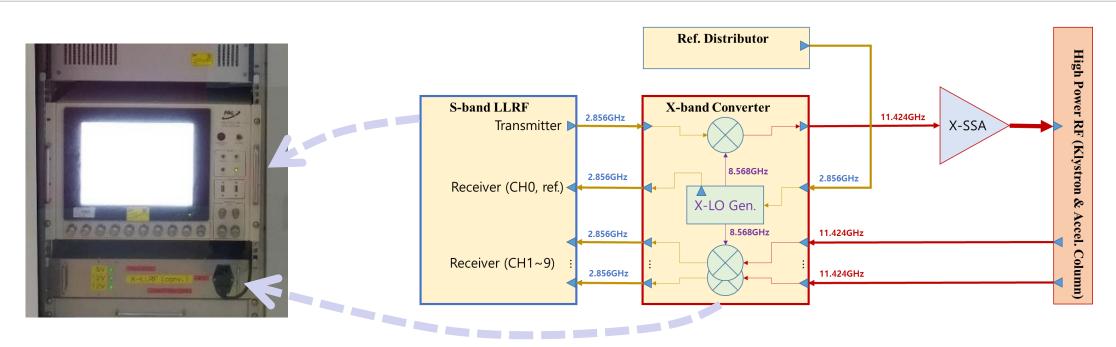


Cause of Failure (total 2 cases, 1 irrecoverable)

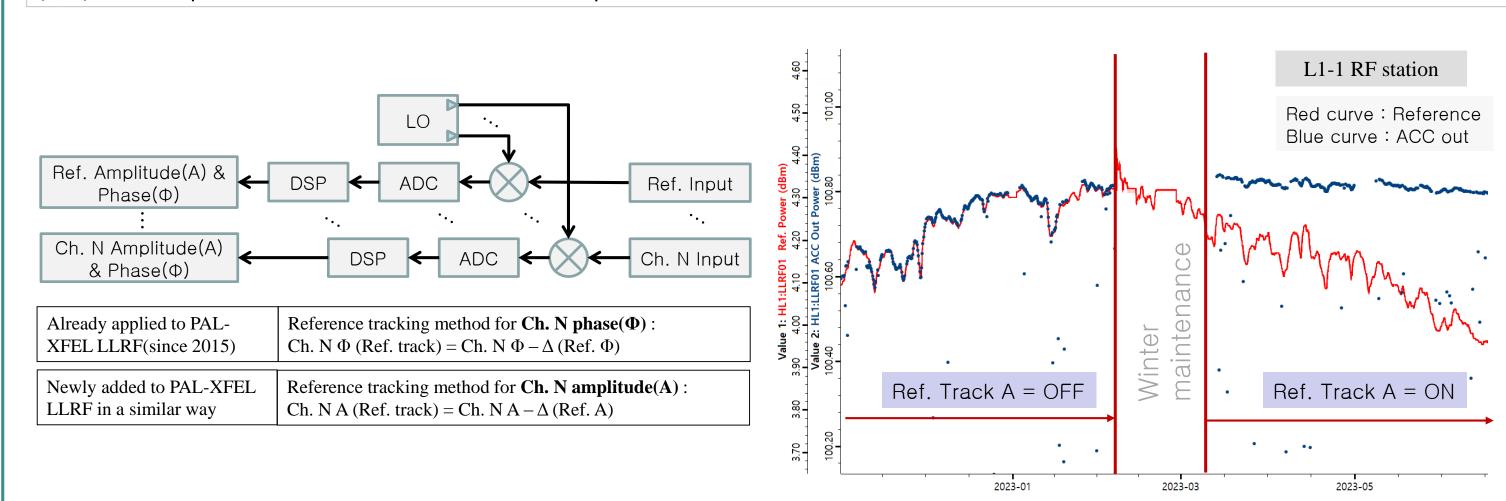
No.	RF station	Failure	Treatment
1	L2-03	SMPS failure	Set replacement (1.4 hrs consumed)
2	L2-06	Over-current interlock	Interlock reset


LLRF + SSA System availability:

* LLRFs and SSAs on, only the RF outputs turned off during maintenance


3 Past major developments

Pulse-by-pulse RF switching development


- Scheme: pulse-by-pulse RF switching for dual beamline operation in mixed-flow way
- Implementation: unique software modifications to the timestamp transmission part and the internal part of the LLRF (Panel PC).
- Contributing to PAL-XFEL operation with high reliability from 2021
- Presented at LLRF2022 under the title "Development of pulse-by-pulse RF switching of PAL-XFEL LLRF for dual-beamline operation"

X-band LLRF development

- Two stage superheterodyne structure: S-band LLRF + X-band converter
- Installed and in reliable operation on PAL-XFEL since 2023 (improvement up to x2 (jitter) and x7 (drift))
- Presented at LLRF2023 under the title "New development of X-band LLRF for PAL-XFEL Linearizer"

Development of a method to reduce RF amplitude drift

- Extension of the reference tracking method for RF amplitude
- Installed and in stable operation on PAL-XFEL since 2023 (drift improvement up to x5)
- Presented at LINAC2024 under the title "Extension of reference tracking method to reduce RF amplitude

drift in particle accelerators"

5 Recent upgrade (Processing PC or P-PC)

Current PPC (Panel PC)

Comparison between current & new P-PC Current PPC New IMB 1 New IMB 2 Industrial Industrial Board Mini-ITX Mini-ITX i5-4570TE i7-10700 i5-14500 DDR4 RAM DDR4 990 ΛΤΛ M 2 NIV/ME N/ 2 NI\/N/E

Remarks		Upgraded, 18 sets in operation since 2025	Upgraded, Ready to install
Max. trig.	~200 Hz	480 Hz	540 Hz
OS	Ubuntu 14	Ubuntu 14	Ubuntu 20
Product Status	PPC discontinued	IMB in production, CPU discontinued, RAM nearly discontinued	IMB & CPU in production, RAM nearly discontinued
PCIe	Gen2 x1	Gen3 ~x16	Gen4 ~x16
SSD	SATA	M.2 NVME	M.2 NVME

New IMB (Industrial Mainboard)

The data-processing rate measur. with LLRF The LLRF set with IMB2 operated stably

without pulse dropout at a repetition rate 540Hz for 2 days 2 days Measuring an EPICS PV update rate

tter, but 540Hz operation OK!

	Current	Plan	Remarks
Final stage RF Tr.	NXP MRF8P29300 (discontinued)	* Replacement to other Tr.s (Ampleon, RFHIC, …) * Securing for spares	Several manufacturers
Middle stage RF Tr.	FLL120 (discontinued)	Replacement to other Tr.s (Ampleon, RFHIC, …)	Several manufacturers
Cooling fan	discontinued	Many spares already secured	

Conclusion

- PAL-XFEL has been supported by highly stable and reliable LLRF and SSA systems for about 10 years.
- Even in 2025, the LLRF and SSA systems are still operating very reliably (availability 99.97%).
- Three major developments have occurred over the past decade: Real-time RF switching for dual beamline operation, development of X-band LLRF and drift improvement by amplitude reference tracking method.
- Recently, some issues occurred: discontinuation of main components and approaching lifecycles.
- To address these issues, we developed 2 replacements for the processing PC and successfully applied one to PAL-XFEL.
- Upgrade activities are underway to ensure stable operation of the LLRF and SSA systems for the next 10 years.

6 Upgrade plan (LLRF & SSA)

LLRE (FPGA-ADC/DAC) undate plan (tentative)

LETTI (11 GA ADO/DAO) upuate piari (teritative)				
		Current	Plan	Remarks
	FPGA	Virtex6 (discontinued)	Kintex US+ (KU11P, KU15P), or Zyng US+ (ZU11EG ~)	Soldered chip or field replaceable SOM
	PCle	Gen 2 x1	Gen2 ~ Gen4 x1 ~ x16	The current PCIe sufficient
	SFP	ı	1 ~ 2	EVR function Optional
	Dev. form	Custom	Custom or COTS	

LLRF (RF module) upgrade plan (tentative)

	Current	Plan	Remarks
Phase noise @1MHz	~ -145dBc/Hz	~ -160dBc/Hz	S- & X-band
X-band module	[IF ↔ S ↔ X] : operating [IF ↔ X] : 2 spare sets	[IF↔S↔X] → build a spare [IF ↔ X] → redesign	Coaxial modules
S-band module	[IF ↔ S]: ~ 50 sets operating	[IF ↔ S] → redesign	* Prototype → coaxial * Mass. Product → PCB

SSA upgrade plan (S-band, tentative)