\ Obvious and Non—Obvious Aspects of 2 Fermilab

fFfrrfrnrrr "I‘

GERKELEY LAB Digital Self—=Excited—Loops for SRF Cavity Control Jefferson Lab

EYE A e riror L. Doolittle, S. D. Murthy, LBNL
SRT I N— M. Guran, S. Raman, L. Reyes, P. Varghese, FNAL
Abstract - > - > > ’ Delayen (1978)
PHASE AND AMPLITUDE STABILIZATION |
In 1978, Delayen showed how Self-Excited Loops (SEL) can be used to Cavity State Space Eq uation OF SUPERCONDUCTING RESONATORS Q . (l)
great advantage for controlling narrow-band SRF cavities. Its key capability g N 3 fesonator stifter (7
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lizing Lorentz forces to allow cavity tuning and phase loop setup in a stable dt @ Thesis by
environment. Would be LTI if a, b, and ¢ were constant. (’Q) dean Roger Delayen . Limiter
As people around the world implement this basic idea with modern FPGA But in SRF, the imaginary part of a (detuning) varies \;lt I tlme!/ i
DSP technology, multiple variations and operational scenarios creep in that Not LTI! For frozen V and ignoring ¢I, the correct drive is ,\}A
have both obvious and non-obvious ramifications for latency, feedback stability, Attenuators
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This paper will review the key properties of a Delayen-style SEL when R(a)

set up for open-loop, amplitude stabilized, and phase-stabilized modes. Then
the original analog circuit will be compared and contrasted with the known
variations of digital CORDIC-based implementations.
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1978 Fig. 2.3 Principle of stabilization of a self-excited loop

(Submitted August 8, 1977) by addition of a signal in quadrature

CORDIC (1 959) What happens to the control loop stability

when the cavity pole moves around?
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Loop gain, detune -200 Hz
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v vl ase Chatter ( ) How have people adapted the core idea into the modern FPGA paradigm?
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LBNL takes inspiration from AD9901 and
adds Stateful Phase Resolver at input of PI loop.
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