Emerging topics in EIC science C. Weiss (JLab), EIC User Group Early Career Workshop, 11-13 July 2025 [Webpage] Target fragmentation in DIS **Transition GPDs** Coherent processes with light ions ÷ Interesting: Specific connections with structure and dynamics, open questions Realistic: Can be studied with expected capabilities - luminosity, detection Not much developed: Need theoretical modeling and experimental simulations ### This presentation Informal comments on some emerging topics, based on personal perspective, developments, ... No attempt to review "accepted" EIC program. New topics complementary, natural # **EIC science: Program** ### **Current status: EIC Yellow Report** R. Abdul Khalek et al, "Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report," Nucl. Phys. A 1026, 122447 (2022), arXiv:2103.05419 [INSPIRE] ### **Main themes** Global properties of hadrons: Mass, spin, parton distributions Multidimensional imaging of hadrons: Spatial, momentum QCD in nuclei: Nuclear partons, interactions, high gluon densities Hadronization process: Fragmentation, jet physics, medium effects Compact summary available in review article: F. Gross et al., "50 Years of Quantum Chromodynamics" Eur. Phys. J. C 83, 1125 (2023), arXiv:2212.11107 [INSPIRE] ### Program still evolving Science: Developments in theory, concepts, methods, processes Detector: Simulations, design Facility: Running conditions and staging, 2nd IR/detector, upgrade plans # EIC science: QCD and parton picture # Hadrons as emergent phenomena of QCD Dynamics relativistic, quantum, strongly coupled Nonperturbative phenomena: Symmetry breaking (chiral, conformal), mass generation, confinement # Parton picture Hadron moves with large momentum $P\gg \mu_{\rm nonpert}$ QCD radiation: Renormalization, factorization Field modes regarded as particles Many-body system: Wave function, configurations, spatial size, internal motion High-energy process samples instantaneous configurations of system # EIC science: Many-body system # **Components of wave function** Few particles with large x = O(1) Many particles with small $x \ll 1$ Connected by QCD interactions # **Physical properties** Particle number densities in x, incl. spin/flavor - PDFs Transverse spatial distributions - GPDs Transverse motion and spin-orbit structures - TMDs Particle correlations? Interactions ↔ non-pert. QCD? # **Target fragmentation: Process** DIS process removes parton with x at scale Q^2 Observe hadrons from fragmentation of target remnant Measure hadron distribution in longitudinal/ transverse momentum, correlation with high-energy process # Physics interest Configurations: What configurations in wave function give rise to the PDFs? How do the typical configurations in the PDFs change with x and parton type? Correlations: How are the partons in wave function correlated? Momentum - spin - quark/antiquark - flavor? Hadronization dynamics: How does "diquark-type" system hadronize? Where/how does baryon number materialize in final state? # Feynman variable $$x_F = \frac{p_h^z}{p_h^z(\text{max})}$$ in CM frame $\mathbf{p} = -\mathbf{q}$, $-1 < x_F < 1$ Natural for hadron-hadron collisions # **Light-cone fraction** $$z = \frac{p_h^+}{(1-x)p^+} = \frac{\text{hadron}}{\text{remnant}} \qquad 0 < z < 1$$ Natural for parton picture, QCD factorization $z \approx -x_F$ in target fragmentation region z = O(1) Photon-proton collinear frame [Alt variable: Rapidity] # Target fragmentation: QCD factorization $$\begin{split} f_h(x,z,p_T;\mu_{\text{fact}}) &= \sum_{X'} \int d^2k_T \\ \langle p \,|\, a^\dagger(k) \,|\, hX' \rangle \langle hX' \,|\, a(k) \,|\, p \rangle_{k^+=xp^+} \end{split}$$ [Naive expression: Gauge link, renormalization] **QCD** factorization $\gamma^* + N \rightarrow X + h(\text{target})$ Trentadue, Veneziano 1994: p_T -integrated Collins 1998: Fixed p_T QCD radiation: DGLAP, same as inclusive DIS Predicts Q^2 -scaling for fixed $z, p_T \ll Q$ ### Fracture functions / Conditional PDFs Describe probability to find hadron with z, p_T in target after removing parton with x Universal, independent of hard process Leading-twist structures Combine aspects of parton distribution and fragmentation functions # **Target fragmentation: Dependences** x < 0.1 # *x*-dependence of target fragmentation Remove parton from different configurations in wave fn x > 0.3: remove valence quark x < 0.1: remove sea quark/gluon in multiparticle config ### Dependence on charge/flavor of removed parton Tag flavor or removed quark/antiquark: Correlation between current and target fragmentation Remove gluon through charm production process # z-dependence of target fragmentation Dynamics of "diquark" hadronization Counting rules $(1-z)^n$ for leading hadrons Frankfurt, Strikman 81 ### x_L distributions of leading baryons Here $$x_L \approx -x_F$$ Q^2 -scaling supports QCD factorization ### **Baryon number transport** Integrated baryon number at $x_L > 0.1$ is only ~0.6-0.7 Significant baryon number transported away from TF region Surprising because at $x \lesssim 0.01$ the DIS process removes mostly sea quarks/gluons, not valence quarks Strikman 2021 Dynamical mechanism of baryon number transport? Baryon junctions: Magdy, Deshpande, Lacey, Li, Tribedy, Xu 2024 Connected with "color entanglement" of nucleon WF Relevant for final states of heavy-ion collisions [Proton distribution does not contain diffractive peak $x_L \approx 1$] ZEUS: S. Chekanov et al., JHEP 06, 074 (2009) [INSPIRE] H1: F. Aaron et al., Eur.Phys.J.C 68, 381 (2010) [INSPIRE] # Target fragmentation: Spin correlations ### Target fragmentation in polarized DIS Polarized DIS leaves remnant system with definite spin Study spin dependence of target fragmentation # Fragmentation observables sensitive to spin $N - \Delta$ production ratio Λ production: Polarization transfer Ceccopieri, Mancusi 2012: Neutrino + DIS data Azimuthal asymmetries with beam and target spin: T-even/odd structures, as in current fragmentation SIDIS Anselmino, Barone, Kotzinian 2011 $$\frac{d\sigma}{dxdQ^2dzdp_Td\phi_h} = [\dots] + \sum_n [\dots] \cos n\phi_h + \sum_n [\dots] \sin n\phi_h$$ # Target fragmentation: EIC detector coverage [CW 2021, prepared for EIC Yellow Report [INSPIRE]] ### **Production rates** Standard semiinclusive DIS rates. Every DIS event has target fragments! Target fragmentation studies can be done with moderate luminosity Pseudorapidity η covered in proton target fragmentation measurements at various x_F and p_T Uses mostly hadron endcap of central detector Some target fragmentation hadrons appear between central detector $\eta \gtrsim 3.5$ and forward detectors $\eta \gtrsim 4.5$ Coverage for target fragmentation hadrons depends on proton beam energy # Target fragmentation: Future EIC studies ### **Theory** Develop realistic models of nucleon fracture function combining partonic structure in initial state and fragmentation dynamics in final state (→ discussion) Identify observables testing specific hypotheses about partonic structure in initial state, e.g. spin and flavor correlations between partons Use jet physics concepts to describe target fragmentation? Yang-Ting Chien 2022 ### **Simulations** Simulate detection of target fragmentation hadrons in DIS at EIC with ePIC: Charged p, π^{\pm}, K^{\pm} , neutral n, π^0, Λ Explore role of hadron endcap and far-forward detectors in various regions of x_F, p_T Study target fragmentation at various proton beam energies Could be done with fragmentation MC before dedicated models of fracture functions become available Explore feasibility of measurement of azimuthal angle dependence (ϕ harmonics) of target fragmentation # Transition GPDs: Excited baryons in QCD [Image credits: NNPDF 3.0, PDG 2016, Roenchen - FZ Jülich] # Structure of ground-state nucleon High-momentum-transfer processes: Short-distance probe, "microscope" Quark/gluon distributions 1D → 3D # Structure of excited baryons? Rich spectrum of excited baryons N^* , Δ : Resonances, unstable particles Quark/gluon structure relevant for - → Dense matter, neutron stars, early universe - → Neutrino-nucleus interactions Need short-distance probe suitable for baryon resonances # **Transition GPDs: Exclusive processes** Process with $$Q^2, W^2 \gg \mu_{\rm had}^2 \sim 1~{\rm GeV}^2, ~|t| \sim \mu_{\rm had}^2$$ Scattering takes place on single quark/gluon in nucleon Amplitude expressed as matrix element of QCD operator between incoming/outgoing nucleon states $$\langle N | \bar{\psi}(z) ... \psi(0) | N \rangle \leftrightarrow \text{nucleon GPDs}$$ ### **Transition GPDs** Same factorization works for scattering processes with $N \to \pi N, N^*$ transitions $$\langle \pi N | \bar{\psi}(z) ... \psi(0) | N \rangle \leftrightarrow \text{transition GPDs}$$ N^* Resonance excitation with defined QCD operator, rich set of quantum numbers Probes quark/gluon structure of N^* N^* from $s_{\pi N}$ (pole) # **Transition GPDs: Baryon structure** Can be extended to $N \to N^*$ transitions Spatial distribution of quarks/gluons "3D imaging" QCD energy-momentum tensor: mass, angular momentum, forces "Mechanical properties" # **Transition GPDs: Nonperturbative methods** # **Chiral dynamics** Soft-pion theorems relate $N \to \pi N$ and $N \to N$ matrix elements Pobylitsa, Polyakov, Strikman 2001; Guichon, Mossé, Vanderhaeghen 2003; Chen, Savage 2004; Birse 2004 # $1/N_c$ expansion of QCD Spin-flavor symmetry relates $N \to N$ and $N \to \Delta$ transitions: $\langle \Delta \mid \mathcal{O} \mid N \rangle = [\text{symmetry factor}] \times \langle N \mid \mathcal{O} \mid N \rangle$ Frankfurt, Polyakov, Strikman 1998. FPS, Vanderhaeghen 2000; Kim, Won, Goity, Weiss 2023 # **Effective degrees of freedom** Chiral soliton model, light-front quark models, holographic models, instanton vacuum ### **Lattice QCD** Partonic structure from Euclidean correlation functions # Transition GPDs: Quark angular momentum Concept of quark angular momentum formulated for $N \to \Delta$ transitions Kim, Won, Goity, Weiss, 2023 $N \to \Delta$ transition angular momentum connected with flavor asymmetry J^{u-d} of quark angular momentum in proton Predictions from $1/N_c$ expansion and LQCD Lattice QCD $$J_{p\to p}^S$$ $J_{\Delta^+\to \Delta^+}^S$ $J_{p\to p}^V$ $J_{p\to \Delta^+}^V$ $J_{\Delta^+\to \Delta^+}^V$ [9] $\mu^2 = 4 \,\text{GeV}^2$ 0.33* 0.33 0.41* 0.58 0.08 [10] $\mu^2 = 4 \,\text{GeV}^2$ 0.21* 0.21 0.22* 0.30 0.04 [11] $\mu^2 = 4 \,\text{GeV}^2$ 0.24* 0.24 0.23* 0.33 0.05 [12] $\mu^2 = 1 \,\text{GeV}^2$ - - 0.23* 0.33 0.05 [13] $\mu^2 = 4 \,\text{GeV}^2$ - - 0.17* 0.24 0.03 [9] Göckeler 2004. [10] Hägler 2008. [11] Bratt 2010. [12] Bali 2019. [13] Alexandrou 2020 $J^{z}(N \to \Delta) = \int d^{2}b \, \mathbf{b} \times \langle \Delta \, | \, \mathbf{T}^{+T} | \, N \rangle$ # **Transition GPDs: Processes** ### **Deeply-virtual Compton scattering** $$e+p \rightarrow e' + \gamma + \Delta^+ \ \ (\rightarrow \pi^0 p, \pi^+ n)$$ also higher N^* Probes chiral-even GPDs Cross section predictions: Semenov-Tian-Shansky, Vanderhaeghen 2023 ### **Pseudoscalar meson production** $$e+p ightarrow e'+\pi^++\Delta^0$$ also η, K mesons $$\pi^0+\Delta^+$$ $$\pi^-+\Delta^{++}$$ Probes chiral-odd GPDs ($x\gtrsim 0.1$), mechanism tested in $p\to p$ Cross section predictions: Kroll, Passek-Kumericki 2023 # [Diffractive vector meson production → separate] CLAS12 $$ep \rightarrow e'\pi^-\Delta^{++}$$ S. Diehl et al. PRL 131 (2023) 021901 [INSPIRE] Hall C $$ep \rightarrow e'\pi^+\Delta^0$$ A. Usman, ECT* Trento Workshop Aug 2023 CLAS12 $ep \rightarrow e' \gamma n \pi^+$ DVCS # **Transition GPDs: EIC far-forward detector** Charged hadrons: Forward spectrometer Neutral hadrons: Zero-Degree Calorimeter Designed/simulated mostly for forward protons and neutrons Transition GPDs present "new" forward hadrons E.g. forward π^0 , forward π^{\pm} rigidity \ll beam **DVCS** with $N \to \Delta$ $$ep \rightarrow e' \gamma \Delta^+ \text{ DVCS}$$ $\Delta^+ \rightarrow \pi^+ n, \pi^0 p$ $$\Delta^+ \to \pi^+ n, \, \pi^0 p$$ Strong decay, happens at vertex $$ep \rightarrow e'\pi^+\Delta^0$$ $$\Delta^0 \to \pi^- p, \, \pi^0 n$$ Different decay modes of same Δ activate different detectors — charged-neutral, neutral-neutral, charged-charged. Could be used for tests and calibration besides physics interest Can we reconstruct forward $\Delta's$ at EIC? Cross section of $N \to \Delta$ DVCS comparable to $N \to N$ DVCS at x > 0.1, drops at small x (non-diffractive process) Cross section models for MC generators can be developed **DVCS** with $N \rightarrow N^*$ Cross section models can be developed # **Transition GPDs: Future EIC studies** # Pion production with $N \to \Delta$ $$ep \rightarrow e'\pi^+\Delta^0, \pi^0\Delta^+, \pi^-\Delta^{++}$$ variety of final states charged/neutral # Kaon production with $N \to \Lambda, \Sigma$ First simulations of forward Λ detection have been performed # Vector meson production with $N \to N^*$ Non-diffractive channels ρ^{\pm} , K^* : Cross sections drop at small x Diffractive channels $\rho^0, \omega, \phi, J/\psi$: Diffraction dissociation of nucleon, connected with fluctuations of gluon density # **Coherent processes: Physics** $$e + A \rightarrow e' + M + A'$$ $M = \text{meson}, \gamma$ coherent scattering Light nuclei: D, 3He, 4He, ... # **Physics interest** Measure nuclear GPDs $\langle A' | \hat{\mathcal{O}}_{\mathrm{QCD}} | A \rangle$ Obtain images of nucleus in QCD degrees of freedom Compare quark \leftrightarrow gluon, charge \leftrightarrow matter distributions Variable target spin: D - Spin 1, 3He - Spin 1/2, 4 He - Spin 0 Probe gluon shadowing in few-nucleon system (J/ψ) production) New approach, complementary to measurements with heavy nuclei Gluon shadowing governs approach to saturation at small xGuzey, Rinaldi, Scopetta, Strikman, Viviani 2022 # Coherent processes: EIC studies Far-forward detection of recoiling nucleus $$x_B \lesssim$$ 0.1, $p_T \sim$ few 10 MeV Use active detection, complementary to veto detection for heavy nuclei # with forward spectrometry $p_{\perp} \qquad \text{but no secondary focus}$ $180 \, \text{MeV/c}$ $0 \, \text{MeV/c}$ $0 \, 0.9 \, 1 \, x_L$ ### Challenge for far-forward acceptance Rigidity(recoil) ≈ Rigidity(beam) $x_B \approx 1 - x_L$ longitudinal momentum loss Need acceptance at $x_L \rightarrow 1$ ### **Secondary focus** Acceptance limited by accelerator; can be improved by secondary focus $\beta_x \approx 0$ at Roman Pots location Discussed for IR8; possible also at IR6 Critical benefits for coherent processes with light ions # **Summary** EIC science program still developing Examples of "emerging" topics: Target fragmentation: Inspect configurations in partonic wave function Transition GPDs: Explore QCD structure of excited baryons Coherent nuclear processes: Image nucleus in QCD degrees of freedom others not covered here... Realistic, can be studied with projected capabilities Many opportunities to pursue new ideas, lead developments, build communities