Emerging topics in EIC science

C. Weiss (JLab), EIC User Group Early Career Workshop, 11-13 July 2025 [Webpage]

Target fragmentation in DIS

Transition GPDs

Coherent processes with light ions

÷

Interesting: Specific connections with structure and dynamics, open questions

Realistic: Can be studied with expected capabilities - luminosity, detection

Not much developed: Need theoretical modeling and experimental simulations

This presentation

Informal comments on some emerging topics, based on personal perspective, developments, ...

No attempt to review "accepted" EIC program. New topics complementary, natural

EIC science: Program

Current status: EIC Yellow Report

R. Abdul Khalek et al, "Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report," Nucl. Phys. A 1026, 122447 (2022), arXiv:2103.05419 [INSPIRE]

Main themes

Global properties of hadrons: Mass, spin, parton distributions Multidimensional imaging of hadrons: Spatial, momentum QCD in nuclei: Nuclear partons, interactions, high gluon densities Hadronization process: Fragmentation, jet physics, medium effects

Compact summary available in review article:

F. Gross et al., "50 Years of Quantum Chromodynamics" Eur. Phys. J. C 83, 1125 (2023), arXiv:2212.11107 [INSPIRE]

Program still evolving

Science: Developments in theory, concepts, methods, processes

Detector: Simulations, design

Facility: Running conditions and staging, 2nd IR/detector, upgrade plans

EIC science: QCD and parton picture

Hadrons as emergent phenomena of QCD

Dynamics relativistic, quantum, strongly coupled

Nonperturbative phenomena: Symmetry breaking (chiral, conformal), mass generation, confinement

Parton picture

Hadron moves with large momentum $P\gg \mu_{\rm nonpert}$ QCD radiation: Renormalization, factorization

Field modes regarded as particles

Many-body system: Wave function, configurations, spatial size, internal motion

High-energy process samples instantaneous configurations of system

EIC science: Many-body system

Components of wave function

Few particles with large x = O(1)

Many particles with small $x \ll 1$

Connected by QCD interactions

Physical properties

Particle number densities in x, incl. spin/flavor - PDFs

Transverse spatial distributions - GPDs
Transverse motion and spin-orbit structures - TMDs

Particle correlations?

Interactions ↔ non-pert. QCD?

Target fragmentation: Process

DIS process removes parton with x at scale Q^2

Observe hadrons from fragmentation of target remnant

Measure hadron distribution in longitudinal/ transverse momentum, correlation with high-energy process

Physics interest

Configurations: What configurations in wave function give rise to the PDFs? How do the typical configurations in the PDFs change with x and parton type?

Correlations: How are the partons in wave function correlated? Momentum - spin - quark/antiquark - flavor?

Hadronization dynamics: How does "diquark-type" system hadronize? Where/how does baryon number materialize in final state?

Feynman variable

$$x_F = \frac{p_h^z}{p_h^z(\text{max})}$$
 in CM frame $\mathbf{p} = -\mathbf{q}$, $-1 < x_F < 1$

Natural for hadron-hadron collisions

Light-cone fraction

$$z = \frac{p_h^+}{(1-x)p^+} = \frac{\text{hadron}}{\text{remnant}} \qquad 0 < z < 1$$

Natural for parton picture, QCD factorization

 $z \approx -x_F$ in target fragmentation region z = O(1)

Photon-proton collinear frame

[Alt variable: Rapidity]

Target fragmentation: QCD factorization

$$\begin{split} f_h(x,z,p_T;\mu_{\text{fact}}) &= \sum_{X'} \int d^2k_T \\ \langle p \,|\, a^\dagger(k) \,|\, hX' \rangle \langle hX' \,|\, a(k) \,|\, p \rangle_{k^+=xp^+} \end{split}$$

[Naive expression: Gauge link, renormalization]

QCD factorization $\gamma^* + N \rightarrow X + h(\text{target})$

Trentadue, Veneziano 1994: p_T -integrated Collins 1998: Fixed p_T

QCD radiation: DGLAP, same as inclusive DIS

Predicts Q^2 -scaling for fixed $z, p_T \ll Q$

Fracture functions / Conditional PDFs

Describe probability to find hadron with z, p_T in target after removing parton with x

Universal, independent of hard process

Leading-twist structures

Combine aspects of parton distribution and fragmentation functions

Target fragmentation: Dependences

x < 0.1

x-dependence of target fragmentation

Remove parton from different configurations in wave fn

x > 0.3: remove valence quark

x < 0.1: remove sea quark/gluon in multiparticle config

Dependence on charge/flavor of removed parton

Tag flavor or removed quark/antiquark: Correlation between current and target fragmentation

Remove gluon through charm production process

z-dependence of target fragmentation

Dynamics of "diquark" hadronization

Counting rules $(1-z)^n$ for leading hadrons Frankfurt, Strikman 81

x_L distributions of leading baryons

Here
$$x_L \approx -x_F$$

 Q^2 -scaling supports QCD factorization

Baryon number transport

Integrated baryon number at $x_L > 0.1$ is only ~0.6-0.7

Significant baryon number transported away from TF region

Surprising because at $x \lesssim 0.01$ the DIS process removes mostly sea quarks/gluons, not valence quarks Strikman 2021

Dynamical mechanism of baryon number transport?

Baryon junctions: Magdy, Deshpande, Lacey, Li, Tribedy, Xu 2024

Connected with "color entanglement" of nucleon WF Relevant for final states of heavy-ion collisions

[Proton distribution does not contain diffractive peak $x_L \approx 1$]

ZEUS: S. Chekanov et al., JHEP 06, 074 (2009) [INSPIRE]

H1: F. Aaron et al., Eur.Phys.J.C 68, 381 (2010) [INSPIRE]

Target fragmentation: Spin correlations

Target fragmentation in polarized DIS

Polarized DIS leaves remnant system with definite spin

Study spin dependence of target fragmentation

Fragmentation observables sensitive to spin

 $N - \Delta$ production ratio

 Λ production: Polarization transfer Ceccopieri, Mancusi 2012: Neutrino + DIS data

Azimuthal asymmetries with beam and target spin: T-even/odd structures, as in current fragmentation SIDIS Anselmino, Barone, Kotzinian 2011

$$\frac{d\sigma}{dxdQ^2dzdp_Td\phi_h} = [\dots] + \sum_n [\dots] \cos n\phi_h + \sum_n [\dots] \sin n\phi_h$$

Target fragmentation: EIC detector coverage

[CW 2021, prepared for EIC Yellow Report [INSPIRE]]

Production rates

Standard semiinclusive DIS rates. Every DIS event has target fragments!

Target fragmentation studies can be done with moderate luminosity

Pseudorapidity η covered in proton target fragmentation measurements at various x_F and p_T

Uses mostly hadron endcap of central detector

Some target fragmentation hadrons appear between central detector $\eta \gtrsim 3.5$ and forward detectors $\eta \gtrsim 4.5$

Coverage for target fragmentation hadrons depends on proton beam energy

Target fragmentation: Future EIC studies

Theory

Develop realistic models of nucleon fracture function combining partonic structure in initial state and fragmentation dynamics in final state (→ discussion)

Identify observables testing specific hypotheses about partonic structure in initial state, e.g. spin and flavor correlations between partons

Use jet physics concepts to describe target fragmentation? Yang-Ting Chien 2022

Simulations

Simulate detection of target fragmentation hadrons in DIS at EIC with ePIC: Charged p, π^{\pm}, K^{\pm} , neutral n, π^0, Λ Explore role of hadron endcap and far-forward detectors in various regions of x_F, p_T

Study target fragmentation at various proton beam energies

Could be done with fragmentation MC before dedicated models of fracture functions become available

Explore feasibility of measurement of azimuthal angle dependence (ϕ harmonics) of target fragmentation

Transition GPDs: Excited baryons in QCD

[Image credits: NNPDF 3.0, PDG 2016, Roenchen - FZ Jülich]

Structure of ground-state nucleon

High-momentum-transfer processes: Short-distance probe, "microscope"

Quark/gluon distributions 1D → 3D

Structure of excited baryons?

Rich spectrum of excited baryons N^* , Δ : Resonances, unstable particles

Quark/gluon structure relevant for

- → Dense matter, neutron stars, early universe
- → Neutrino-nucleus interactions

Need short-distance probe suitable for baryon resonances

Transition GPDs: Exclusive processes

Process with
$$Q^2, W^2 \gg \mu_{\rm had}^2 \sim 1~{\rm GeV}^2, ~|t| \sim \mu_{\rm had}^2$$

Scattering takes place on single quark/gluon in nucleon

Amplitude expressed as matrix element of QCD operator between incoming/outgoing nucleon states

$$\langle N | \bar{\psi}(z) ... \psi(0) | N \rangle \leftrightarrow \text{nucleon GPDs}$$

Transition GPDs

Same factorization works for scattering processes with $N \to \pi N, N^*$ transitions

$$\langle \pi N | \bar{\psi}(z) ... \psi(0) | N \rangle \leftrightarrow \text{transition GPDs}$$
 N^*

Resonance excitation with defined QCD operator, rich set of quantum numbers

Probes quark/gluon structure of N^*

 N^* from $s_{\pi N}$ (pole)

Transition GPDs: Baryon structure

Can be extended to $N \to N^*$ transitions

Spatial distribution of quarks/gluons "3D imaging"

QCD energy-momentum tensor: mass, angular momentum, forces "Mechanical properties"

Transition GPDs: Nonperturbative methods

Chiral dynamics

Soft-pion theorems relate $N \to \pi N$ and $N \to N$ matrix elements Pobylitsa, Polyakov, Strikman 2001; Guichon, Mossé, Vanderhaeghen 2003; Chen, Savage 2004; Birse 2004

$1/N_c$ expansion of QCD

Spin-flavor symmetry relates $N \to N$ and $N \to \Delta$ transitions: $\langle \Delta \mid \mathcal{O} \mid N \rangle = [\text{symmetry factor}] \times \langle N \mid \mathcal{O} \mid N \rangle$

Frankfurt, Polyakov, Strikman 1998. FPS, Vanderhaeghen 2000; Kim, Won, Goity, Weiss 2023

Effective degrees of freedom

Chiral soliton model, light-front quark models, holographic models, instanton vacuum

Lattice QCD

Partonic structure from Euclidean correlation functions

Transition GPDs: Quark angular momentum

Concept of quark angular momentum formulated for $N \to \Delta$ transitions

Kim, Won, Goity, Weiss, 2023

 $N \to \Delta$ transition angular momentum connected with flavor asymmetry J^{u-d} of quark angular momentum in proton

Predictions from $1/N_c$ expansion and LQCD

Lattice QCD
$$J_{p\to p}^S$$
 $J_{\Delta^+\to \Delta^+}^S$ $J_{p\to p}^V$ $J_{p\to \Delta^+}^V$ $J_{\Delta^+\to \Delta^+}^V$ [9] $\mu^2 = 4 \,\text{GeV}^2$ 0.33* 0.33 0.41* 0.58 0.08 [10] $\mu^2 = 4 \,\text{GeV}^2$ 0.21* 0.21 0.22* 0.30 0.04 [11] $\mu^2 = 4 \,\text{GeV}^2$ 0.24* 0.24 0.23* 0.33 0.05 [12] $\mu^2 = 1 \,\text{GeV}^2$ - - 0.23* 0.33 0.05 [13] $\mu^2 = 4 \,\text{GeV}^2$ - - 0.17* 0.24 0.03

[9] Göckeler 2004. [10] Hägler 2008. [11] Bratt 2010. [12] Bali 2019. [13] Alexandrou 2020

 $J^{z}(N \to \Delta) = \int d^{2}b \, \mathbf{b} \times \langle \Delta \, | \, \mathbf{T}^{+T} | \, N \rangle$

Transition GPDs: Processes

Deeply-virtual Compton scattering

$$e+p \rightarrow e' + \gamma + \Delta^+ \ \ (\rightarrow \pi^0 p, \pi^+ n)$$
 also higher N^*

Probes chiral-even GPDs

Cross section predictions: Semenov-Tian-Shansky, Vanderhaeghen 2023

Pseudoscalar meson production

$$e+p
ightarrow e'+\pi^++\Delta^0$$
 also η, K mesons
$$\pi^0+\Delta^+$$

$$\pi^-+\Delta^{++}$$

Probes chiral-odd GPDs ($x\gtrsim 0.1$), mechanism tested in $p\to p$ Cross section predictions: Kroll, Passek-Kumericki 2023

[Diffractive vector meson production → separate]

CLAS12
$$ep \rightarrow e'\pi^-\Delta^{++}$$

S. Diehl et al. PRL 131 (2023) 021901 [INSPIRE]

Hall C
$$ep \rightarrow e'\pi^+\Delta^0$$

A. Usman, ECT* Trento Workshop Aug 2023

CLAS12 $ep \rightarrow e' \gamma n \pi^+$ DVCS

Transition GPDs: EIC far-forward detector

Charged hadrons: Forward spectrometer Neutral hadrons: Zero-Degree Calorimeter

Designed/simulated mostly for forward protons and neutrons

Transition GPDs present "new" forward hadrons

E.g. forward π^0 , forward π^{\pm} rigidity \ll beam

DVCS with $N \to \Delta$

$$ep \rightarrow e' \gamma \Delta^+ \text{ DVCS}$$
 $\Delta^+ \rightarrow \pi^+ n, \pi^0 p$

$$\Delta^+ \to \pi^+ n, \, \pi^0 p$$

Strong decay, happens at vertex

$$ep \rightarrow e'\pi^+\Delta^0$$

$$\Delta^0 \to \pi^- p, \, \pi^0 n$$

Different decay modes of same Δ activate different detectors — charged-neutral, neutral-neutral, charged-charged. Could be used for tests and calibration besides physics interest

Can we reconstruct forward $\Delta's$ at EIC?

Cross section of $N \to \Delta$ DVCS comparable to $N \to N$ DVCS at x > 0.1, drops at small x (non-diffractive process)

Cross section models for MC generators can be developed

DVCS with $N \rightarrow N^*$

Cross section models can be developed

Transition GPDs: Future EIC studies

Pion production with $N \to \Delta$

$$ep \rightarrow e'\pi^+\Delta^0, \pi^0\Delta^+, \pi^-\Delta^{++}$$

variety of final states charged/neutral

Kaon production with $N \to \Lambda, \Sigma$

First simulations of forward Λ detection have been performed

Vector meson production with $N \to N^*$

Non-diffractive channels ρ^{\pm} , K^* : Cross sections drop at small x

Diffractive channels $\rho^0, \omega, \phi, J/\psi$: Diffraction dissociation of nucleon, connected with fluctuations of gluon density

Coherent processes: Physics

$$e + A \rightarrow e' + M + A'$$
 $M = \text{meson}, \gamma$ coherent scattering

Light nuclei: D, 3He, 4He, ...

Physics interest

Measure nuclear GPDs $\langle A' | \hat{\mathcal{O}}_{\mathrm{QCD}} | A \rangle$ Obtain images of nucleus in QCD degrees of freedom Compare quark \leftrightarrow gluon, charge \leftrightarrow matter distributions

Variable target spin: D - Spin 1, 3He - Spin 1/2, 4 He - Spin 0

Probe gluon shadowing in few-nucleon system (J/ψ) production) New approach, complementary to measurements with heavy nuclei Gluon shadowing governs approach to saturation at small xGuzey, Rinaldi, Scopetta, Strikman, Viviani 2022

Coherent processes: EIC studies

Far-forward detection of recoiling nucleus

$$x_B \lesssim$$
 0.1, $p_T \sim$ few 10 MeV

Use active detection, complementary to veto detection for heavy nuclei

with forward spectrometry $p_{\perp} \qquad \text{but no secondary focus}$ $180 \, \text{MeV/c}$ $0 \, \text{MeV/c}$ $0 \, 0.9 \, 1 \, x_L$

Challenge for far-forward acceptance

Rigidity(recoil) ≈ Rigidity(beam)

 $x_B \approx 1 - x_L$ longitudinal momentum loss

Need acceptance at $x_L \rightarrow 1$

Secondary focus

Acceptance limited by accelerator; can be improved by secondary focus $\beta_x \approx 0$ at Roman Pots location

Discussed for IR8; possible also at IR6

Critical benefits for coherent processes with light ions

Summary

EIC science program still developing

Examples of "emerging" topics:

Target fragmentation: Inspect configurations in partonic wave function

Transition GPDs: Explore QCD structure of excited baryons

Coherent nuclear processes: Image nucleus in QCD degrees of freedom

others not covered here...

Realistic, can be studied with projected capabilities

Many opportunities to pursue new ideas, lead developments, build communities