The dual-radiator Ring Imaging Cherenkov Interaction Tagger

M. Battaglieri, M. Osipenko, <u>S. Vallarino</u>

INFN Genova

July 12, 2025

Ring Imaging Cherenkov detector

A charged particle moving faster than light in a medium emits photons forming a cone with angle:

$$\cos\theta = \frac{1}{n\beta}$$

- By detecting the ring projection of the Cherenkov cone, the Cherenkov angle can be identified.

The ePIC PID in hadronic endcap

The dual-radiator Ring-Imaging Cherenkov Detector (dRICH) is essential to access flavor information.

Goals:

- Hadron 3σ separation between 3 50 GeV/c;
- Complement electron ID below 15 GeV/c;
- Cover forward pseudorapidity 1.5 (barrel) - 3.5 (b. pipe).

The ePIC dual-radiator RICH

The identification of charged particles with momenta larger than 3 GeV/c in the hadronic endcap will face two major challenges:

- to cover a wide momentum range (up to 50 GeV/c);
- to operate in a high (~1T) magnetic field.

The two radiators, aerogel ($n \approx 1.020$) and gas ($n \approx 1.0085$) will allow for combining their information to identify hadrons over the full momentum range.

The **Silicon Photomultiplier (SiPM)** will be used as magnetic-insensitive photosensor.

Simone Vallarino - INFN Genova

The dRICH data throughput challenge

dRICH DAQ parameters		
RDO boards	1248	
ALCOR64 x RDO	4	
dRICH channels (total)	319488	
Number of DAM L1	27	
Input link in DAM L1	47	
Output links in DAM L1	1	
Number of DAM L2	1	
Input link to DAM L2	27	
Link bandwidth [Gb/s] (assumes VTRX+)	10	
Interaction tagger reduction factor	1	
Interaction tagger latency [s]	2,00E-03	
EIC parameters		
EIC Clock [MHz]	98,522	
Orbit efficiency (takes into account gap)	0,92	

	Limit
300,00 ▼	4.000,00
55,20	800,00
34,50	788,16
276,00	
1,08	10,00
50,67	470,00
12,97	
50,67	10,00
1.368,14	270,00
	55,20 34,50 276,00 1,08 50,67 12,97

Sensors Dark Count Rate: 3 - 300 kHz (increasing with radiation damage → with experiment lifetime).

Detector throughput: 14 - 1400 Gbps.

EIC bunch crossing: bunch crossing rate of 100 MHz.

Physical relevant interaction: one every ~ 200 bunch crossing → interaction rate of 500 kHz.

A system tagging the interacting bunches can address the throughput challenge.

A ML-guided data reduction system is being developed by INFN RM1 as a complementary approach.

The dRICH Interaction Tagger

The dRICH Interaction Tagger (dIT) will be a scintillating detector-based component of the dRICH, designed to tag events in which at least one charged particle with sufficient energy passes through.

Requirements:

- High efficiency (no false negative);
- Good timing ~1 ns;
- Reduction factor > 10;
- Thin due to strict geometrical constraints.

We are developing a hodoscope based on Scintillating Fibers (SciFi) to meet these requirements. It consists of two layers of square-shaped SciFi, rotated by 90°.

The dIT simulation

The SciFi simulation

- Two layers of 2 mm wide SciFi, 2% cladding thickness
- XY-directions, 956 fibers/layer, 1.23 km of fiber length/layer;

The 2mm squaredshape SciFi implementation on ePIC simulation framework

The dIT simulation.
The beam pipe hole
has an offset of
~25 mRad

The dIT efficiency

- E_{MPV} = 300 keV/layer = 2400 photons \approx 20 p.e./SiPM;
- The threshold could be set at 100 keV \approx 7 p.e./SiPM \rightarrow expected Poisson inefficiency < 0.1 %;
- Efficiency is estimated as the ratio of events with charged tracks having dIT over the number of events with dRICH hits.
- Overall expected efficiency 99.97%, if there is at least one track from the interaction point in the dRICH.

The dIT reduction factor

- ePIC maximum nominal luminosity: $10^{34} cm^{-2}s^{-1}$.
- ePIC cross section for $Q^2 > 1 \text{ GeV}^2 : 0.556 \,\mu b$
- Beam gas luminosity: $4.2 \times 10^{29} cm^{-2} s^{-1}$.
- Hadron beam and electron beam gas cross sections: $78.54 \, mb$ and $699.4 \, mb$.

The total dIT rate became $R_{dIT} = 395 \ kHz$.

The reduction factor is then $\frac{R_{Bunch-crossing}}{R_{dIT}} = \frac{500 \text{ MHz}}{395 \text{ kHz}} \cong 1.3 \times 10^3 \gg 10^3$

Minimum

requirement

Ongoing R&D in Genova

The ALCOR readout

- ALCOR is the ASIC
 selected for the dRICH
 readout it is designed to
 perform Time-over Threshold (ToT)
 measurements.
- A readout chain based on ALCOR has been implemented in Genova.

- ALCOR will also be used for reading out the dIT fibers.
- This readout chain enables testing of the SiPMs and scintillating fibers we are procuring.

The ALCOR readout – new Front End Board

ONSEMI Fast output SiPM

We performed some preliminary test with the Onsemi fast output SiPM:

- The test setup included a plastic scintillator tile with VM2000 reflective layer and the SiPM readout;
- Sensors with 3x3 and 4x4 mm² active area were tested;
- Both fast and standard output were evaluated.

Expected performance from datasheet:

- Fast output rise time ~ 100 ps;
- Fast output pulse width (FWHM) 1.5 ns →limited by the plastic scintillator response time (~10 ns).

The Onsemi fast-output SiPM appears to be a promising option for improving the timing performance of our detector.

Further tests will be carried out to evaluate the Time-over-Threshold (ToT) measurement compared to the standard output signal.

Conclusions

- Simulations show that the dRICH Interaction Tagger (dIT), based on a two-layer SciFi design, is a highly efficient hodoscope.
- According to current simulations of collisions and background, the dIT provides a suppression factor sufficient to meet the minimum requirement.
- The ALCOR-based DAQ chain, together with our custom FEB, enables testing of the SciFi.
- Fast-output SiPMs from Onsemi are promising candidates for improving timing resolution, potentially down to ~100 ps.
- The dIT appears to effectively address the dRICH data throughput challenge, and its implementation is supported by the dRICH working group.
- Once SciFi tests are completed and the design is finalized, a proposal will be submitted to the ePIC Technical Coordination Office.

Thank you for you attention

