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Big Picture

What Are We Trying to Do—and Why?

The Electron–Ion Collider (EIC) smashes electrons into atomic nuclei to unlock the secrets of
visible matter.

To see “what happened” in each collision, we build ultra-precise detectors that record
trillions of tiny flashes of energy.

Our challenge: pick out electrons from a forest of other particles in real time—think of
finding a single firefly in a fireworks display.

We combine:

A simple physics rule (E/p) to throw away the easiest “wrong” events, and
A modern AI (a Convolutional Neural Network) to spot the subtle shapes of an
electron’s light showers.

Result: a powerful, production-ready tool that helps every analysis at the EIC see electrons
more cleanly—and push the frontier of nuclear physics.
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Big Picture

How This Fits Into the EIC Ecosystem

ePIC detector: our Barrel Imaging Calorimeter is one of the first eyes on collisions, and
accurate electron ID is its lifeblood.

Software synergy: this ML module slots into the EICrecon framework, alongside tracking,
triggering, and data-quality tools.

Physics payoff: cleaner electron samples mean sharper measurements of proton spin,
internal quark motions, and the emergence of mass.

Sustainability: automated training and reproducible pipelines ensure that as the detector
evolves, our AI will adapt.
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Introduction

Introduction

The Electron-Ion Collider (EIC) is a next-generation facility for nuclear physics.

ePIC is the first detector to be built at the EIC.

Canada plays a leading role in software and computing via the EIC Canada collaboration.

This project is hosted by the University of Manitoba as part of the MITACS Globalink
program.

Goal of the Internship

Integrate and validate a Machine Learning solution for particle identification in the ePIC detector.
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Motivation

Why Machine Learning?

Traditional reconstruction methods are not optimal for high-granularity data.

BIC high-granularity data produces complex energy-deposition patterns beyond a simple ratio.

Machine Learning can identify patterns in complex energy deposition profiles.

CNNs can learn spatial correlations across layers and hits, capturing subtle shower shape
differences.

Improves accuracy in particle identification (PID), which is crucial for many physics analyses.

Application Area

Particle identification using calorimeter shower profiles in the ePIC Barrel Imaging Calorimeter.

Tomas Sosa (UofM) ML for Event Reconstruction July 11, 2025 6 / 20



Detector Context

Barrel Imaging Calorimeter (BIC)

The BIC is part of the central calorimetry system of ePIC.

Measures energy deposited by particles passing through.

Electrons, pions, and photons leave distinct energy showers.

Electrons generate compact and well-defined showers; pions show wider and less regular
showers.

Physics Motivation

Electron/pion separation is critical in measurements like π0 → γγ.
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ML Approach

Machine Learning Pipeline

We have divided our methodology into two steps: a classical cutoff using the E/p ratio and
an ML cutoff using a CNN.

Configuration:

Beam energy: Ebeam = 1.0GeV
Polar angles θ = 45◦–135◦

The objective is to have a total electron efficiency of 0.95 (εe = 0.95) and at the same time
maximize pion rejection (Rπ).

Total Efficiency and Rejection Definitions

εe =
Npass

e

Ntotal
e

, Rπ =
1

Npass
π

Ntotal
π

=
Ntotal

π

Npass
π
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E/p Preselection

First cut: E/p Preselection

We first exploit the classic calorimeter-to-track ratio E/p =
∑L

i=1 ESciFi(i)
ptrack

.

Physically:

Electrons shower electromagnetically → deposit E ≈ p.
Pions leave minimum-ionizing signal → E/p ≪ 1.

We scan L = 1 . . . 12 SciFi layers, for each finding the E/p threshold that keeps 97

We select the best separation between all layers based on the maximum pion rejection and
use the E/p ratio to obtain the initial cutoff
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CNN Classifier

Second cut: CNN Classifier

At this point all events have already passed the E/p cut (keeps ≈ 97% of electrons, rejects

pions by R
E/p
π ≈ 23).

CNN’s job consists of learning residual differences in shower shape to further separate
electrons from pions.

We must choose a CNN output threshold Pcut
e− such that

εtote− = ε
E/p
e− × εML

e− ≈ 0.95

(i.e. overall 95% electron efficiency).

Our goal is to maximize the combined pion rejection Rtot
π = RE/p

π × RML
π at this 95%

efficiency.

raw events → [ E/p pre-cut ] → [ CNN classifier ]

Total Efficiency and Rejection

εtote = εE/p
e × εML

e , Rtot
π = RE/p

π × RML
π
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CNN Classifier

Data & Features

Data Loading:
hits.snappy.parquet → tensor (Nevt, Nlayers, Nhits, Nfeat=5)
labels.snappy.parquet → PDG codes → {e−, π−}
Preprocessing:

Reshape to [event, layer, hit, feature]
Map PDG codes to binary labels (1=e−, 0=π−)
Pion weight: wπ = min

(
Ne

Nπ
× timb, w

max
π

)
with timb = 0.1, wmax

π = 1.0
Split train/val/test: 70 / 10 / 20

Data Features (per hit)

enorm: hit energy fraction
rnorm: radial coordinate
∆η and ∆ϕ from shower centroid
layer-type flag (Astropix or SciFi)
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CNN Classifier

Model Architecture & Training

Model (VGG-v2):[
Conv2D(64,3)×2 →MaxPool

]
→[

Conv2D(128,3)×3 →MaxPool
]
→Flatten→Dense(1024)×2 →Softmax(2)

Training:
Adam(lr=1e-3), weighted sparse CCE; 30 epochs; batch 2000 (train) / 1000 (val)

Evaluation:
Loss/Acc curves (→ ML learning.pdf); test inference → ϵML, Rπ,ML; P(e

−) histogram (→
ML rejection.pdf)
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Results

E/p Layer Scan
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Results

E/p Results
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• Blue curve: chosen E/p threshold vs. max SciFi layer.
• Orange points (log-scale): pion-rejection factor Rπ.

• Peak at layer 8 E/p > 0.74 maximizes Rπ while keeping 97
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Results

Training Validation Curves
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Results

ML Rejection Histogram

0.0 0.2 0.4 0.6 0.8 1.0
Pe

100

101

102

103

104

Co
un

ts

e
ML = 97.93%

RML = 7.4
e
E/p = 97.01%

RE/p = 23.5

1GeV at eta = 1.1102230246251565e 16
R = 174.5 at e = 95.00%

e

Tomas Sosa (UofM) ML for Event Reconstruction July 11, 2025 16 / 20



Next Steps

EICrecon Integration

Converting the keras model to an onnx model.

Create C++ inference to integrate the E/p and ML algorithms properly into the EICrecon
framework.

Validation of the EICrecon inference algorithm using simulated data.

Output

A working and reproducible ML-based PID module for ePIC.
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Expected Impact

Expected Impact

Improved particle identification in BIC.

Application in analyses.

Reusable training pipeline and inference module for future upgrades.
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Conclusions

Conclusions

We demonstrated a two-step PID workflow in the ePIC Barrel Calorimeter:

An optimized E/p cut (8 SciFi layers, E/p > 0.7403) → 97
A CNN-based secondary cut on shower “images” → net 95

Our 5-channel per-hit feature representation (enorm, r0, ∆η, ∆ϕ, layer-flag) successfully
captures subtle EM vs. hadronic shower shapes.

The VGG-v2 CNN learns layer–hit spatial correlations and boosts pion suppression by nearly
an order of magnitude beyond E/p alone.
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