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What Are We Trying to Do—and Why?

m The Electron—lon Collider (EIC) smashes electrons into atomic nuclei to unlock the secrets of
visible matter.

m To see “what happened” in each collision, we build ultra-precise detectors that record
trillions of tiny flashes of energy.
m Our challenge: pick out electrons from a forest of other particles in real time—think of
finding a single firefly in a fireworks display.
m We combine:
A simple physics rule (E/p) to throw away the easiest “wrong” events, and
A modern Al (a Convolutional Neural Network) to spot the subtle shapes of an
electron’s light showers.

m Result: a powerful, production-ready tool that helps every analysis at the EIC see electrons
more cleanly—and push the frontier of nuclear physics.
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How This Fits Into the EIC Ecosystem

m ePIC detector: our Barrel Imaging Calorimeter is one of the first eyes on collisions, and
accurate electron ID is its lifeblood.

m Software synergy: this ML module slots into the EICrecon framework, alongside tracking,
triggering, and data-quality tools.

m Physics payoff: cleaner electron samples mean sharper measurements of proton spin,
internal quark motions, and the emergence of mass.

m Sustainability: automated training and reproducible pipelines ensure that as the detector
evolves, our Al will adapt.
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Introduction

m The Electron-lon Collider (EIC) is a next-generation facility for nuclear physics.
m ePIC is the first detector to be built at the EIC.
m Canada plays a leading role in software and computing via the EIC Canada collaboration.

m This project is hosted by the University of Manitoba as part of the MITACS Globalink
program.

Goal of the Internship

Integrate and validate a Machine Learning solution for particle identification in the ePIC detector.
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Why Machine Learning?

m Traditional reconstruction methods are not optimal for high-granularity data.
m BIC high-granularity data produces complex energy-deposition patterns beyond a simple ratio.
m Machine Learning can identify patterns in complex energy deposition profiles.

m CNNs can learn spatial correlations across layers and hits, capturing subtle shower shape
differences.

m Improves accuracy in particle identification (PID), which is crucial for many physics analyses.

Application Area

Particle identification using calorimeter shower profiles in the ePIC Barrel Imaging Calorimeter.
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Barrel Imaging Calorimeter (BIC)

m The BIC is part of the central calorimetry system of ePIC.
m Measures energy deposited by particles passing through.
m Electrons, pions, and photons leave distinct energy showers.

m Electrons generate compact and well-defined showers; pions show wider and less regular
showers.

Physics Motivation

Electron/pion separation is critical in measurements like 70 — 7.

o F = = DA

ML for Event Reconstruction



o e
Machine Learning Pipeline
an ML cutoff using a CNN.
m Configuration:

m We have divided our methodology into two steps: a classical cutoff using the E/p ratio and
Beam energy: Epeam = 1.0 GeV
Polar angles 8 = 45°-135°

maximize pion rejection (Ry)

Total Efficiency and Rejection Definitions

m The objective is to have a total electron efficiency of 0.95 (¢, = 0.95) and at the same time

1

total
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total
N7r
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o FePrededn
First cut: E/p Preselection
m We first exploit the classic calorimeter-to-track ratio E/p =
m Physically:
Electrons shower electromagnetically — deposit E ~ p.

Pions leave minimum-ionizing signal — E/p < 1.

b Esairi(i)

Ptrack :
m We scan L =1...12 SciFi layers, for each finding the E/p threshold that keeps 97
m We select the best separation between all layers based on the maximum pion rejection and
SRRy RO x 9ac

use the E/p ratio to obtain the initial cutoff



S CONNCasifier
Second cut: CNN Classifier

m At this point all events have already passed the E/p cut (keeps ~ 97% of electrons, rejects
pions by RE/P ~ 23).

m CNN's job consists of learning residual differences in shower shape to further separate
electrons from pions.

m We must choose a CNN output threshold PCEt such that

E
ghot — g/

X a — ~0.95
(i.e. overall 95% electron efficiency).
m Our goal is to maximize the combined pion rejection Rt = RE/P x RML at this 95%

efficiency.
m raw events — [ E/p pre-cut | — [ CNN classifier |

Total Efficiency and Rejection

EZot _ Ef/p « Ele\/[L, Rtot RE/p % RML
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. CNNCssifier
Data & Features

m Data Loading:

hits.snappy.parquet — tensor (Neyt, Niayerss Nhits, Nieat =5)
labels.snappy.parquet — PDG codes — {e~, 7"}
m Preprocessing:

Reshape to [event, layer, hit, feature]

Map PDG codes to binary labels (1=e~, 0=7")

Pion weight: w, = min(,’\\ll—:’r X timb, W,Tax) with timp = 0.1, Wi =1.0
Split train/val/test: 70 / 10 / 20

Data Features (per hit)

€norm: hit energy fraction

rorm: radial coordinate

An and A¢ from shower centroid
layer-type flag (Astropix or SciFi)
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Model Architecture & Training

m Model (VGG-v2):

[ Conv2D(64,3)x2 —MaxPool| —

[ Conv2D(128,3) x3 —MaxPool| —Flatten—Dense(1024) x2 —Softmax(2)
m Training:

Adam(Ir=1e-3), weighted sparse CCE; 30 epochs; batch 2000 (train) / 1000 (val)
m Evaluation:

Loss/Acc curves (— ML_learning.pdf); test inference — emr, Rr mi; P(e™) histogram (—
ML_rejection.pdf)
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E/p Layer Scan
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E/p Results

Optimal E/p cut versus max ScFi layer
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e Blue curve: chosen E/p threshold vs. max SciFi layer.
e Orange points (log-scale): pion-rejection factor R-.
e Peak at layer 8 E/p > 0.74 maximizes R, while keepin% 97 P



Training Validation Curves
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ML Rejection Histogram
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ElCrecon Integration
m Converting the keras model to an onnx model.
m Create C++ inference to integrate the E/p and ML algorithms properly into the EICrecon
framework.
m Validation of the EICrecon inference algorithm using simulated data.
A working and reproducible ML-based PID module for ePIC.
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Expected Impact
m Improved particle identification in BIC.
m Application in analyses.

m Reusable training pipeline and inference module for future upgrades.
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s Comdsions
Conclusions

m We demonstrated a two-step PID workflow in the ePIC Barrel Calorimeter:
An optimized E/p cut (8 SciFi layers, E/p > 0.7403) — 97
A CNN-based secondary cut on shower “images” — net 95

m Our 5-channel per-hit feature representation (enorm, fo, An, A, layer-flag) successfully
captures subtle EM vs. hadronic shower shapes.

m The VGG-v2 CNN learns layer—hit spatial correlations and boosts pion suppression by nearly
an order of magnitude beyond E/p alone.
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