

What is epic about ePIC?

First machine that will answer the proton spin puzzle (?)

Transverse Momentum Distributions: TMD PDF

Sivers function

dependence on:

longitudinal momentum fraction \mathcal{X} transverse momentum k_{\perp} energy scale

Phenomenology of polarized TMDs

⇒ presence of a non-zero Sivers function

 f_1^{\perp} will induce a dipole deformation of f_1

Figure 2.13: The density in the transverse-momentum plane for unpolarized quarks with x=0.1 in a nucleon polarized along the \hat{y} direction. The anisotropy due to the proton polarization is described by the Sivers function, for which the model of [77] is used. The deep red (blue) indicates large negative (positive) values for the Sivers function.

EIC White Paper]

Sivers function sign change

vanishing Sivers function? — Final state interactions and Wilson lines to consider

Sign change in Sivers function

$$f_{1T,DIS}^{\perp} = -f_{1T,DY}^{\perp}$$

Predictions for future experiments

Existing data

Future measurements

EIC Yellow Report

Extraction of Sivers Function

Determined through its contributions to the cross section of polarized SIDIS

Extraction of Sivers Function

LO - NLL

$$A_{UT}^{\sin(\phi_h - \phi_S)} \equiv \langle \sin(\phi_h - \phi_S) \rangle \sim \frac{f_{1T}^{\perp} \otimes D_1^{a \to h}}{f_1^a \otimes D_1^{a \to h}}$$

universality

first Sivers extraction with unpolarised TMDs extracted from data

Elements of Sivers function first moment

Parametrize the evolved Sivers function first moment

PV20Sivers: Polarized TMDs

$$\chi^2 = 1.12$$

125 data points from SIDIS, DY

LO-NLL

TMDs

PV20Sivers

polarized

$$f_1(x, k_{\perp}; Q^2) - f_{1T}^{\perp}(x, k_{\perp}; Q^2)$$

PV17

unpolarized

Updated Sivers extraction

Additional data

Updated Sivers extraction

Additional data

[PRL133]

More accurate unpolarized TMDs

MAPTMD22

pionMAPTMD

Updated Sivers extraction

Additional data

[PRL133]

More accurate unpolarized TMDs

MAPTMD22

pionMAPTMD

Revised fitting framework

NangaParbat

Nanga Parbat: MAP framework

Nanga Parbat: a TMD fitting framework

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:

Extraction of proton quark unpolarized TMDs: MAPTMD22

- Global analysis of Drell-Yan and Semi-Inclusive DIS data sets: 2031 data points
- Perturbative accuracy: N³LL_
- Normalization of SIDIS multiplicities beyond NLL
- Number of fitted parameters: 21
- Really good description: $\chi^2/N_{data} = 1.06$

MAPTMD22: datasets included

Drell-Yan: 484 data points

Fixed-target low-energy DY

RHIC data

LHC and Tevatron data

SIDIS: 1547 data points

HERMES data

COMPASS data

Total: 2031 fitted points

MAPTMD22: visualization of TMD evolution

$$\pi^{-} + W \rightarrow \mu_{+} + \mu_{-} + X$$

$$\uparrow q$$

$$\downarrow q$$

$$\downarrow q$$

$$\uparrow q$$

$$\downarrow q$$

$$\downarrow$$

$$rac{d\sigma^{DY}}{d|oldsymbol{q}_T|dydQ} \propto \int d|oldsymbol{b}_T||oldsymbol{b}_T||oldsymbol{J}_0(|oldsymbol{q}_T||oldsymbol{b}_T|) \hat{oldsymbol{f}}_{1\pi}^{a}ig(x_A,oldsymbol{b}_T^2;\mu,\zeta_A) \hat{oldsymbol{f}}_{1p}^{ar{a}}ig(x_B,oldsymbol{b}_T^2;\mu,\zeta_B)$$

$$\hat{f}_{1p}^{~ar{a}}ig(x_B,m{b}_T^2;\mu,\zeta_Big)$$

taken from MAP collaboration global extraction at N3LL

updated Sivers Fit results

Total number of data

379

$$\chi^2 = 1.23$$

from

- semi-inclusive DIS,
- pion-induced Drell-Yan,
- W-Z boson production

Accuracy: NLL-LO

Selected results: Compass 2009

COMPASS, Deu - Pip x-projection

Selected results: COMPASS 2022

COMPASS 2022 SIDIS, Hm

Selected results: COMPASS 2015

COMPASS 2015 pion DY

Selected results: HERMES 2020

Selected results: JLab ³He

JLab, He - Pim x-projection

Sivers TMD

Sivers TMD

Conclusions

TMDs are a fundamental instrument to describe the internal structure of nucleons and the interaction of their partons

Sivers function is a fascinating window on the relation between proton spin and parton dynamics

ePIC will offer us the opportunity to improve this picture with new specific measurements