



# **GEM Detector and DAQ Status**

Nilanga Liyanage University of Virginia

PRad Collaboration Meeting, Newport News, 03/03/2025

#### Outline

GEMs in PRad Experiment

□ PRad-II GEM chamber Status

**DAQ** Preparation

□ Summary



#### **GEM Detectors in PRad Experiment**

- □ Two major detectors: HyCal + GEM
- □ World largest GEM detector by then:, 120 cm X 102 cm



**GEM Detectors in PRad Experiment** 





□ Installed in Hall B beamline in 2016



#### Efficiency and Resolution – PRad Experiment

**GEM** detection efficiency

- □ Efficiency drop from dead area: 2% (spacers, high voltage sector, dead area)
- □ High efficiency in overlapping area: 99.2%
- □ Average efficiency: 97% in small angle region







#### PRad GEM Detectors – Current Status

- PRad GEM Detectors
   will be used in LAD
   experiment in Hall C
- Will be used as spare
   GEM detectors for
   PRad-II (LAD will be completed by PRad-II running)



X-ray test for LAD (UVA)

Cosmic test for LAD (JLab)

#### PRad-II – Add a second Layer of GEM detector



PRad-II Experimental Setup (Side View)

#### Design of the New Chambers for PRad-II

- □ 4 new chambers to compose 2 layers
- Overall share the same design with PRad-I but with some improvements
  - □ New spacer location
  - Optimized design for GEM foil, drift foil
- □ Same outer dimension



New detector frame design

#### **New Spacer Location**

Asymmetric Spacer Location to minimize effective dead area in the overlap region





#### **GEM Foil Design**

Segmentation on bottom side of GEM
foil – great improvement on chamber
robustness during operation

Dedicated circular sector on cathode foil for high rate situation





#### Preparation of Construction in Cleanroom

- Cleanroom transition to PRad-II project; Use the same stretcher from PRad-I detector construction





**UVA cleanroom** 

## **Progress on GEM Construction**

- GEM HV inspection system & GEM stretcher have been upgraded for PRad-II
- GEM construction for LAD experiment is ongoing
- All GEM frames for PRad-II have arrived and frame preparation is in progress
- Designed PRad-II HV distribution boards to match new design of GEM and cathode foils.
- □ All PRad-II HV distribution boards were made
- All GEM foils were shipped from CERN last week; expect here soon
- GEMs Assembly in cleanroom for PRad-II expected to

start in two weeks

| 11 |       |   |   |  |
|----|-------|---|---|--|
| Q. |       | - | • |  |
|    | (this |   |   |  |









#### **GEM Construction & Characterization Timeline**



- Complete construction for two GEM chambers in May, 2025
- Finish characterization and move two chambers to JLab in June, 2025
- Compete PRad-II GEM construction and characterization in August, 2025

#### **GEMs Installation in Hall B**



Current design of GEM
 installation frame



- The new DAQ scheme calls for many HDMI Cables.
- Need to add cable tray for HV cables,
   HDMI cables, gas inputs & output lines



Gas output is on the back of

the detectors

□ Need clearance for gas

output lines

#### Switching to New MPD-DAQ system for PRad-II

- Currently used and well tested for all SBS experiments
- ➤ Extensive expertise for JLab DAQ group and UVA group

#### New MPD-based GEM Readout System



#### **GEM Readout – APV Electronics**



#### GEM Readout – APV Data

A typical event from cosmic data – 12 APVs

Every 25 ns take one sample, 6 time sample, 128 channels per sample

For cosmic events, most strips record pedestal data

Same situation for PRad experiment, > 90% data are APV pedestal data

Remove online or offline



#### **Online Zero Suppression**

Online zero suppression algorithm implemented on VTP on-bard FPGA

3 different algorithms available (Sorting, Danning, Histogramming)

- □ Sorting, Danning algorithm from UVA group
- Danning Algorithm has been successfully implemented on the FPGA firmware production algorithm for GMn, GEn experiments – Ben Raydo, JLab
- Histogramming algorithm (Andrew Puckett, UConn) to be implemented for GEp experiment optimization for unexpected polarity-inverted "signals"







#### VTP/MPD DAQ System

- □ VTP-MPD system used in SBS program, 4 KHz event rate > 90% live time, 15 APVs per MPD module
- Bottleneck on MPD limited data bandwidth with 1.25 Gbps, MPD transfer all APV raw frames to VTP for zero sup Option 1: Process zero suppression on MPD, new version MPD ordered



Option 2: Reduce the APV load per MPD (15 APVs to 3 APVs)

#### VTP/MPD DAQ System

- A working VTP/MPD system for upcoming
   PRad-II GEM Detector working at UVA
- Use the same system to test new MPDs, new firmware, and the 25 KHz event rate
- Move the setup to Hall B for integration to PRad-II overall DAQ



#### VTP/MPD DAQ System

We were hoping to get the newly improved version of MPD. However, these units will not be ready or time for Prad-II

Given this we are switching to the backup plan – use only 3 APV per MPD:

Current version can also achieve 25 KHz event rate

- Redesign backplane, make them all 2~3
   slot (more MPD modules needed)
- Backplane designed and fabricated by Jeff Wilson, Mark Taylor – JLab FE group (Chris's group)



5-slot APV-backplane CAD assembly

#### PRad-II Backplane Design

New Backplanes need to be made for the chambers, to reduce the APV load to 3 or less per MPD

44 + 6 3-slot back planes

- 4 + 2 2-slot back planes
- 4 + 2 1-slot back planes





### Setup for 25-kHz Event Rate Test

- .Generating external trigger
  - AWG (Siglent SDG6022X) => Discriminator => TI
  - O Fixed trigger rate: 5 kHz 35 kHz
- VTP-MPD System
  - One MPD module
  - 1.25 Gbps link between VTP-MPD
  - Test was performed on a 10-slot APV backplane
  - APVs per MPD module: 10, 4, 3,2
- CODA-based DAQ
  - Buffer level: 4

#### **External trigger**



#### **10-slot APV backplane**



24

#### 25 kHz Event Rate Test: Procedure & Results

- .Test procedure
  - Mount 10 APVs on the backplane and enable 10, 4, or 3 APVs
  - Ramp up the trigger rate and determine the maximum trigger rate (TR\_max) with 95% CODA live time and the trigger rate (TR\_50) when CODA live time drops to 50%
- Test Results

| Number of Enabled APVs | TR-max with 95% Coda Live time | TR-50 with 50% Coda Live time |
|------------------------|--------------------------------|-------------------------------|
| 10                     | 7.5 kHZ                        | 8.0 kHz                       |
| 4                      | 19.0 kHz                       | 19.5 kHz                      |
| 3                      | 25.5 kHz                       | 26.0 kHz                      |
| 2                      | 27.5 kHZ                       | 32.0 kHz                      |

#### Next Steps for 25 kHz Rate Test

- Use the Random Trigger (instead of the fixed trigger) to further study the actual data processing delays on the APV/MPD
  - Write a python script to create an encode stream as an arbitrary waveform and then load it into current AWG to make it generate Poisson like random triggers
  - Planning to do this test this week

#### MPD/APV Timeline



Table 1: List of Modules

#### **Overall Plan**





#### UVA Group for PRad-II GEM Project

Research Assistant Professor: Huong Nguyen

Postdoc: Asar Ahmed

Graduate Students: Vimukthi Gamage, Bhasitha, Jacob McMurty, Mihitha Maithripala, Vidhura Vishvanath, Nithya Kularatne

Physics Technician: Eric Fernandez

Vidhura Vishvanath / Nithya Kularatne will be thesis student on PRad-II

#### Summary

- All GEM Frames frames arrived in February; all GEM foils arriving this week
- □ Full construction completion expected in August, 2025
- Use the APV MPD system for DAQ
  - □ Mature decode/reconstruction from SBS program
  - □ All APV cards arrived
- □ DAQ with 3 APV per MPD to go to 25 KHz event rate
  - Need to get new back planes made
  - Need to borrow MPDs from Hall A
- Currently no show-stopper to meet PRad-II timeline

# Thank you !

Big thanks to:

Alexander Camsonne, Chris Cuevas, Ben Raydo, Jeff Wilson, Mark Taylor, Holly Szumila-Vance, Ching Him Leung, Bill Gunning

Paolo Musico (INFN)

and JLab Fast Electronics Group

and CERN MPGD Workshop