
Measurement of Tensor Observables and Deuteron Structure Function

Summer School "Light-ion physics in the EIC era:

From nuclear structure to high-energy processes "

Chhetra Lama 25/06/2025

Measurement of Tensor Observables and Deuteron Structure Function

C12-13-011: The b₁ experiment

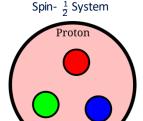
30 Days in Jlab Hall C A-Physics Rating

C12-15-005: A_{zz} for x>1

44 Days in Jlab Hall C A-Physics Rating

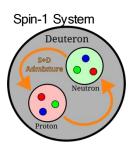
RunGroup Spokespersons

Chen, Day, Higinbothan, Kalantarians, Keller Long, Rondon, Slifer, Solvignon


Courtesy:Karl Slifer

Protons & Deuterons

Proton


Three valence quarks + gluons and sea quarks

No nudeon-nucleon interactions

$$m = \pm \frac{1}{2}$$

S. Kumano, IOP Proc. Tens. Pol. Targ. (2014)

Deuteron

Proton-Neutron bound state

Simplest nuclear system: nucleon interaction effects

$$m = \pm 1, 0$$

Courtesy:Allison Zec

What Deuterons Do That Protons Don't

Proton

Spin- $\frac{1}{2}$ System

$$m = + \frac{1}{2}$$

 $m = -\frac{1}{2}$

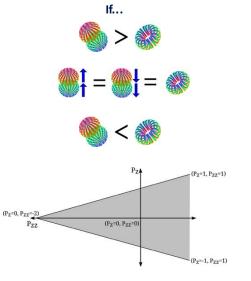
"Typical" Vector Polarization

$$P_z = p_+ - p_-$$

J Forest, et al, PRC 54646 (1996)

Deuteron

Spin-1 System


 $P_{zz} = (p_+ + p_-) - 2p_0$

Courtesy: Allison Zec

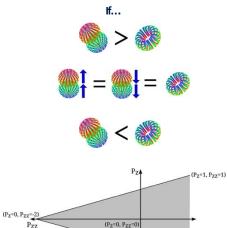
Tensor Polarization Properties

Then...

$$0 < P_{zz} \le 1$$

$$P_{zz} = 0$$

$$-2 \le P_{zz} < 0$$


- Pz ranges from -1 to +1
- Pzz ranges from -2 to +1
- ➤ In deuterons both P_z and P_{zz} can be nonzero simultaneously

Courtesy: Allison Zec

Tensor Polarization Properties

Then...

$$0 < P_{zz} \le 1$$

$$P_{zz} = 0$$

$$-2 \le P_{zz} < 0$$

A high-luminosity tensor-polarized target has promise as a novel probe of nuclear physics

Courtesy: Allison Zec

(Pz=-1, Pzz=1)

$$rac{d^2\sigma}{dkd\Omega} = \sigma_0 \left[1 + h_e (P_z A_{\parallel} + P_{zz} A_T^{ed}) + P_z A_V^d + rac{1}{2} P_{zz} A_{zz}
ight]$$

Here σ_0 is unpolarized cross section, h_e is electron beam helicity, $A_{||}$, A_T^{ed} , A_V^d and A_{zz} are symmetries dependent on the polarization angle

$$\frac{d^2\sigma}{dkd\Omega} = \sigma_0 \left[1 + h_e (P_z A_{\parallel} + P_{zz} A_T^{ed}) + P_z A_V^d + \frac{1}{2} P_{zz} A_{zz} \right]$$

Here σ_0 is unpolarized cross section, h_e is electron beam helicity, $A_{||}$, A_T^{ed} , A_V^d and A_{zz} are symmetries dependent on the polarization angle

If we integrate over beam helicity, then the first term will disappear

$$rac{d^2\sigma}{dkd\Omega} = \sigma_0 \left[1 + h_e (P_z A_{\parallel} + P_{zz} A_T^{ed}) + P_z A_V^d + rac{1}{2} P_{zz} A_{zz}
ight]$$

Here σ_0 is unpolarized cross section, h_e is electron beam helicity, $A_{||}$, A_T^{ed} , A_V^d and A_{zz} are symmetries dependent on the polarization angle

If we integrate over beam helicity, then the first term will disappear

$$rac{d^2\sigma}{dkd\Omega} = \sigma_0 \left[1 + h_e (P_z A_{\parallel} + P_{zz} A_T^{ed}) + P_z A_V^d + rac{1}{2} P_{zz} A_{zz}
ight]$$

Here σ_0 is unpolarized cross section, h_e is electron beam helicity, $A_{||}$, A_T^{ed} , A_V^d and A_{zz} are symmetries dependent on the polarization angle

If we integrate over beam helicity, then the first term will disappear

If we flip between vector polarization sign then A_V^d disappear

W. Leidemann, E.L. Tomusiak, H. Arenhovel, Phys. Rev. C 43 1022 (1991)

$$rac{d^2\sigma}{dkd\Omega} = \sigma_0 \left[1 + h_e (P_z A_{\parallel} + P_{zz} A_T^{ed}) + P_z A_V^d + rac{1}{2} P_{zz} A_{zz}
ight]$$

Here σ_0 is unpolarized cross section, h_e is electron beam helicity, $A_{||}$, A_T^{ed} , A_V^d and A_{zz} are symmetries dependent on the polarization angle

If we integrate over beam helicity, then the first term will disappear

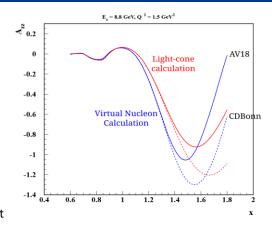
If we flip between vector polarization sign then A_V^d disappear

W. Leidemann, E.L. Tomusiak, H. Arenhovel, Phys. Rev. C 43 1022 (1991)

Tensor Asymmetry and Structure Function

For $0.8 \le x \le 1.8$

 σ_p =polarized cross section σ_0 =unpolarized cross section


$$A_{zz} = \frac{2}{f P_{zz}} \left(\frac{\sigma_p}{\sigma_0} - 1 \right)$$

for $x \le 0.5$

$$b_1 = -\frac{3}{2} F_1 A_{zz}$$

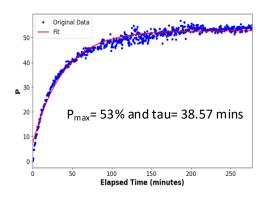
- Currently no quasielastic data available
- Difficult to measure with just vector polarized deuterons

M. Sargsian, M. Strikman arXiv:1409.6056 E. Long *et al*, JLab C12-15-005

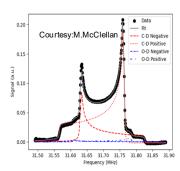

Above: Two theory models: AV18 (solid) and CDBonn (dashed) for two different calculation frameworks predicting the quasielastic value of A_{22} .

Courtesy:Allison Zec

Tensor Enhancement @UNH DNP Lab


Experimental setup for the cooldown at the UNH Polarized Target lab

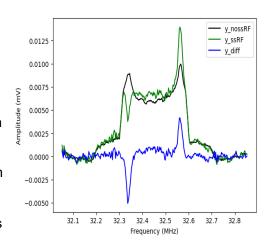
Tensor Enhancement by Holeburning

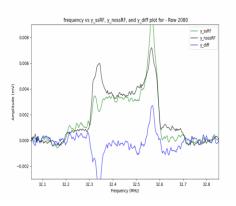

Polarization

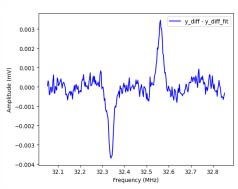
$$\mathbf{P} = -(\mathbf{P_{max}} - \mathbf{P_0}) e^{-\frac{\mathbf{t} - \mathbf{t_0}}{\tau}} + \mathbf{P_{max}}$$

$$P_z = p_+ - p_-$$

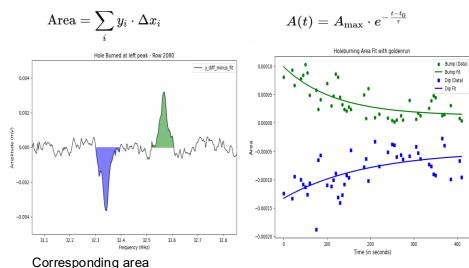
$$P_{zz} = (p_+ + p_-) - 2p_0$$


Data from UNH Lab


Holeburning Continued


- Multiple applications of holeburning we achieved 16% tensor polarization on d-butanol.
- We are currently working on improvements to our equipment design so that our system will perform even better.
- Our goal is to achieve 30% tensor polarization using this technique.

Holeburning Relaxation Time


Livetime animation of Holeburning

Difference in ssRF-nossRF

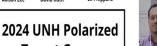
Holeburning Relaxation Time Continued

corresponding area

Area curve fitting

Summary

Santiesteban



Postdocs

Eli Phippard

Target Group

Zoe Wolters

Hector Chinchay

Faroog

Muhammad

Olokunboyo

Tensor polarized targets present new opportunities for highluminosity experiments such as b_1 and A_{77}

- ➤ DNP tried-and-true method for target polarization going on
- UNH NPG has demonstrated tensor polarization capability

NPG group at UNH

Question?

Thank you!
Any Questions will be Welcome!