The Measurement of Tensor Observables and Deuteron Structure Function

Summer School "Light-ion physics in the EIC era: From nuclear structure to high-energy processes"

Chhetra Lama 25/06/2025

Protons & Deuterons

Deuteron Spin-1 System

Proton-Neutron bound state

Simplest nuclear system: nucleon interaction effects

 $m = \pm 1, 0$ Courtesy:Allison Zec

> FIU FLORIDA INTERNATIONAL UNIVERSITY

What Deuterons Do That Protons Don't

Courtesy:Allison Zec

b1 and Azz polarized target experiment

Tensor Polarization Properties

Then... $0 < P_{zz} \le 1$

 $P_{zz} = 0$

 $-2 \leq P_{zz} < 0$

- Pz ranges from -1 to +1
- Pzz ranges from -2 to +1
- In deuterons both P_z and P_{zz} can be nonzero simultaneously

Courtesy:Allison Zec

Tensor Polarization Properties

$$rac{d^2\sigma}{dkd\Omega}=\sigma_0\left[1+h_e(P_zA_{\parallel}+P_{zz}A_T^{ed})+P_zA_V^d+rac{1}{2}P_{zz}\ A_{zz}
ight]$$

Here σ_0 is unpolarized cross section, h_e is electron beam helicity, $A_{||}, A_T^{ed}, A_V^d$ and A_{zz} are symmetries dependent on the polarization angle

W. Leidemann, E.L. Tomusiak, H. Arenhovel, Phys. Rev. C 43 1022 (1991)

b1 and Azz_polarized target experiment

$$rac{d^2\sigma}{dkd\Omega}=\sigma_0\left[1+h_e(P_zA_{\parallel}+P_{zz}A_T^{ed})+P_zA_V^d+rac{1}{2}P_{zz}\ A_{zz}
ight]$$

Here σ_0 is unpolarized cross section, h_e is electron beam helicity, $A_{||}, A_T^{ed}, A_V^d$ and A_{zz} are symmetries dependent on the polarization angle

If we integrate over beam helicity, then the first term will disappear

Tensor Observables

$$rac{d^2\sigma}{dkd\Omega} = \sigma_0 \left[1 + h_e(P_z A_{\parallel} + P_{zz} A_T^{ed}) + P_z A_V^d + rac{1}{2} P_{zz} A_{zz}
ight]$$

Here σ_0 is unpolarized cross section, h_e is electron beam helicity, $A_{||}, A_T^{ed}, A_V^d$ and A_{zz} are symmetries dependent on the polarization angle

If we integrate over beam helicity, then the first term will disappear

Tensor Observables

$$rac{d^2\sigma}{dkd\Omega} = \sigma_0 \left[1 + h_e(P_z A_{\parallel} + P_{zz} A_T^{ed}) + P_z A_V^d + rac{1}{2} P_{zz} A_{zz}
ight]$$

Here σ_0 is unpolarized cross section, h_e is electron beam helicity, $A_{||}, A_T^{ed}, A_V^d$ and A_{zz} are symmetries dependent on the polarization angle

If we integrate over beam helicity, then the first term will disappear

If we flip between vector polarization sign then A_V^d disappear

Tensor Observables

$$\frac{d^2\sigma}{dkd\Omega} = \sigma_0 \left[1 + h_e(P_z A_{\parallel} + P_{zz} A_T^{ed}) + P_z A_V^d + \frac{1}{2} P_{zz} A_{zz} \right]$$

Here σ_0 is unpolarized cross section, h_e is electron beam helicity, $A_{||}, A_T^{ed}, A_V^d$ and A_{zz} are symmetries dependent on the polarization angle

If we integrate over beam helicity, then the first term will disappear

If we flip between vector polarization sign then A_V^d disappear

Tensor Asymmetry and Structure Function

For 0.8 ≤ x ≤ 1.8

 σ_p =polarized cross section σ_0 =unpolarized cross section

$$A_{zz} = \frac{2}{f P_{zz}} \left(\frac{\sigma_p}{\sigma_0} - 1 \right)$$

for $x \leq 0.5$

- $b_1 = -\frac{3}{2}F_1A_{zz}$
- Currently no quasielastic data available
- Difficult to measure with just vector polarized deuterons

M. Sargsian, M. Strikman arXiv:1409.6056 E. Long *et al*, JLab C12-15-005

Above: Two theory models: AV18 (solid) and CDBonn (dashed) for two different calculation frameworks predicting the quasielastic value of A_{zz} .

Courtesy:Allison Zec

b1 and Azz_polarized target experiment

Tensor Enhancement @UNH DNP Lab

Experimental setup for the cooldown at the UNH Polarized Target lab

b1 and Azz polarized target experiment

Tensor Enhancement by Holeburning

Data from UNH Lab

b1 and Azz polarized target experiment

Holeburning Continued

After multiple applications of holeburning we are able to achieve 16% tensor polarization on d-butanol. We are currently working on improvements to our equipment design so that our system will perform even better. Our goal is to achieve 30% tensor polarization using this technique.

Holeburning Relaxation Time

Livetime animation of Holeburning

Difference in ssRF-nossRF

b1 and Azz_polarized target experiment

Holeburning Relaxation Time Continued

$$\mathrm{Area} = \sum_i y_i \cdot \Delta x_i$$

$$A(t) = A_{ ext{max}} \cdot e^{-rac{t-t_0}{ au}}$$

Area curve fitting

Summary

Professors

Nathaly Santiesteban

Postdocs

Undergraduate Student

Allison Zec

David Ruth

Eli Phippard

Zoe Wolters

McClellan

Graduate Students

Anchit Arora Chhetra Lama

Olaiva Olokunboyo

- Tensor polarized targets present new opportunities for high-luminosity experiments such as b1 and Azz
- DNP tried-and-true method for target polarization
- UNH NPG has demonstrated tensor polarization capability

NPG group at UNH

Thank you! Question???