

Proton Antiproton Electroproduction off Protons at CLAS12

Leonel Martinez, Lei Guo 6/25/25

History

A brief overview

- $p\bar{p}$ system has long been used to search for intermediate resonances
- Evidence for narrow resonances has been inconclusive
- Low statistic experiments (pre 1990's)
- BES-II[1] found near mass threshold resonance
 - $M(p\bar{p}) = 1.832 GeV$
 - $\Gamma < 76 MeV/c^2$
- BES-III[2] extracted quantum numbers

• 0⁻⁺

[1]Bai, J. Z., et al. "Observation of a Near-Threshold Enhancement in Th P Pbar Mass Spectrum from Radiative J/Psi-->gamma P Pbar Decays." arXiv.Org, 7 Mar. 2003, arxiv.org/abs/hep-ex/0303006v1. [2] Ablikim, M, et al. "Spin-Parity Analysis of Ppbar Mass Threshold Structure in J/PSI and Psi' Radiative Decays." arXiv.Org, 5 Dec. 2011, arxiv.org/abs/1112.0942.

Leonel Martinez

 $M(p\bar{p})$ from the reaction $\pi^- p \rightarrow \pi^- p p \bar{p}$

Previous yp Analyses

- $\gamma p \rightarrow ppp$
- Recent high statistics photoproduction experiments have found no evidence of narrow resonances
 - CLAS g12 (Will Phelps)[3]
 - Glue-X (Hao Li)[4]
- Focused on cross section extraction
- High cross section needed for resonance extraction

[3] Phelps, Will. "Antibaryon Photoproduction Using CLAS at Jefferson Lab." Florida International University, 2017. [4] Li, Hao. "Baryon–Antibaryon Photoproduction Off the Proton." Carnegie Mellon University, 2023.

Leonel Martinez

Experiment (year)	$\#$ of $p\bar{p}$	${\rm Mass}~({\rm MeV})$	Width (MeV)	Comment
CERN (1977) [5] (details in Fig. 109)	6000	2020 ± 3 2204 ± 5	$24{\pm}12\\16{}^{+20}_{-16}$	$\pi^- p \to p_{fwd} p \bar{p} \pi^-$
Cornell (1979) [6]	65	2020 2200	<40 60	Virtual photoproduction Signal cross section $6.6\pm$ Signal cross section 5 ± 2
LAMP2 (1979) [99]	137	-	-	No evidence
DESY(1984) [9] (details in Fig. 110)	200	$1939{\pm}6$ $2024{\pm}5$	$52{\pm}16$ $29{\pm}12$	Signal cross section $14\pm$ Signal cross section $21\pm$
CLAS g6b (2003) (internal notes $[10]$)	2500	1950 2020	7.8 3.3	
CLAS g6c (2006) (unpublished thesis [11])	25000	-	-	No evidence, upper limit $\sigma(\gamma p \rightarrow pX(2020)) < 0.3$
CLAS g12 (2017) (unpublished thesis $[12]$)	250000	-	-	No evidence
GlueX (this work)	14.1 million	-	-	No evidence

Various experiments and their results on whether an intermediate resonance was detected.

Differential cross section as a function of the invariant mass of either $M(p\bar{p})$ or M(pp).

lmart470@fiu.edu

-5 nb-4 nb

set at

Motivation

- Narrow resonances have conflicting evidence
- Potential wide resonances
- Production mechanism of $p\bar{p}$ remains unclear
- $p\bar{p}$ is a prime candidate to look for potential intermediate exotic states
 - Glueballs[5]
 - Tetraquarks[6]: $qq\bar{q}\bar{q}$
 - Baryonium[6]: Bound NN
 - Intermediate Mesons: $q\bar{q}$

[5] Gutsche, Thomas, et al. "Search for the Glueball Content of Hadrons in Gamma P Interactions at Gluex." arXiv.Org, 17 Aug. 2016, arxiv.org/abs/1605.01035. [6] Olsen, Stephen Lars. "A New Hadron Spectroscopy." arXiv.Org, 28 Nov. 2014, arxiv.org/abs/1411.7738.

Leonel Martinez

CLAS12 Jefferson Lab Hall B

- CEBAF Large Acceptance Spectrometer
- Main detector subsystems (of interest)
 - Forward Detector (FD) $\theta \in [5^\circ, 35^\circ]$
 - High momentum forward going particles
 - Forward Tagger (FT) $\theta \in [2.5^\circ, 5^\circ]$
 - Low angle scattered electrons

Reaction and Data

- Looking into the reaction
 - $ep \rightarrow epp\bar{p}$
- Run Group A Spring 2019 Data
 - 10.2*GeV* Electron beam
 - Electron beam incident on LH_2
- Requiring an electron in either the FD or the FT
 - Different Q^2 range

Leonel Martinez

A possible Feynman Diagram

Reaction Statistics

- Missing mass technique
 - $ep \rightarrow epp(\bar{p})$
- Different kinematic regions
 - $Q^2 \in [0, 0.6]$
 - $Q^2 \in [1,6]$

$$Q^2 \propto \sin^2 \frac{\theta_e}{2}$$

Reaction Statistics

- Missing mass technique
 - $ep \rightarrow epp(\bar{p})$
- Different kinematic regions
 - $Q^2 \in [0, 0.6]$
 - $Q^2 \in [1,6]$

$$Q^2 \propto \sin^2 \frac{\theta_e}{2}$$

Reaction Statistics

- Missing mass technique
 - $ep \rightarrow epp(\bar{p})$
- Different kinematic regions
 - $Q^2 \in [0, 0.6]$
 - $Q^2 \in [1,6]$

$$\cdot Q^2 \propto \sin^2 \frac{\theta_e}{2}$$

8000

Leonel Martinez

lmart470@fiu.edu

Leonel Martinez

lmart470@fiu.edu

Background Studies

- Data driven background estimation technique
- ϕ Randomization
 - Break correlation of final state protons
 - Estimate uncorrelated background
- Multi step process
 - Average over many exclusion ranges

Background Studies

- Data driven background estimation technique
- ϕ Randomization
 - Break correlation of final state protons
 - Estimate uncorrelated background
- Multi step process
 - Average over many exclusion ranges

Background Studies

- Data driven background estimation technique
- ϕ Randomization
 - Break correlation of final state protons
 - Estimate uncorrelated background
- Multi step process
 - Average over many exclusion ranges

Background Subtraction

- How well does data driven background estimation work?
 - Subtract estimated background
- Isolate physics of interest
- Background under the peak is removed
- Shape of background useful for other distributions of $p\bar{p}$ system
 - Invariant Mass, Angular Distributions, ...

Leonel Martinez

lmart470@fiu.edu

Background Subtraction

- How well does data driven background estimation work?
 - Subtract estimated background
- Isolate physics of interest
- Background under the peak is removed
- Shape of background useful for other distributions of $p\bar{p}$ system
 - Invariant Mass, Angular Distributions, ...

Outlook A brief summary

- $ep \rightarrow epp\bar{p}$
- First time high statistics electroproduction cross section extraction
- Amplitude Analysis
- Further background studies
 - Uncorrelated and combinatorial background

Leonel Martinez

Backup Slides

Uncorrelated Background

- ϕ Angle Randomization to break the correlation in the final state
 - $p_T^x = |p_T| \cos(\phi_1 + \delta_1)$
 - $p_T^y = |p_T| \sin(\phi_1 + \delta_1)$
- Correlation between final state particles
 - Not $ep \rightarrow epp\bar{p}$ events

