Study of NN Short Range Correlations in the XEM2 Experiment

Ramon Ogaz 25 Jun 2025 For the Light ions for the EIC Summer School

Scattering Processes

- This experiment will be focused on Quasi-Elastic (QE) Scattering
 - Can be interpreted as scattering from the entire nucleon within the nucleus

The NN Short-Range Correlation (SRC) Picture

Were studying the high momentum component of the nuclear wave function

Picture credit: Nadia Fomin

The nucleon momentum distribution

- Early Mean-Field models of the nucleus couldn't account for the "observation" of a tail in the distribution at high momentum
 - Nucleons were "observed" above the Fermi momentum
 - Where do these high momentum nucleons come from??

The nucleon momentum distribution

Credit: Degli Atti C C and Simula S 1996 prc 53 1689

The nucleon momentum distribution

Credit: Degli Atti C C and Simula S 1996 prc 53 1689

2N SRC data

- In the region x > 1, these plateaus have been observed
- The value of this plateau is the magnitude of a_2 .
- a₂ can also be interpreted as the abundance of 2N SRCs relative to Deuteron.

SRC Expansion

• We can expand the cross section in terms of scattering cross sections for each SRC order:

$$\sigma(x,Q^2) = Aa_1\sigma_1(x,Q^2) + \frac{A}{2}a_2\sigma_2(x,Q^2) + \frac{A}{3}a_3\sigma_3(x,Q^2) + \dots$$

- σ_n is the scattering cross-section from a nucleon that's part of an SRC group of size n
- a_n is the ratio of the scattering cross sections from a nucleus of mass A to that off the simplest nucleus of mass n
- a_n represents the abundance of each nN SRC group. In the case of 2N: $a_2(A) = \frac{2}{A} \frac{\sigma_A}{\sigma_D} \Big|_x$

XEM2 Details – Hall C

- Ran concurrently with Experiment E12-10-008 (Detailed Studies of the nuclear dependence of F2 in light nuclei) using HMS
- Data was taken for SRC experiment in SHMS and EMC experiment in HMS were taken SIMULTANEOUSLY
 - Some data was taken using both spectrometers simultaneously.
- For SRCs ALL targets were measured at 8 deg,
 - Only a subset was measured at 10 deg.

XEM2 Details

Previously measured targets	NEW targets					
³ He	¹⁰ B	18	••••	1 35º HMS	All Ta	rgets
⁴ He	¹¹ B	16		55 1145	3N SRC	extra
⁹ Be	⁶ Li*	14		26° HM5+	SHMS	
¹² C	⁷ Li*					
⁶³ Cu	48 T i	(GeV		20° HMS		-
¹⁹⁷ Au	Sn*	8 G				
⁴⁰ Ca	232Thor	6		SRC I	land	3N
⁴⁸ Ca	58NI:	4 10°	SHMS 2	N		511
⁵⁴ Fe		2 - 8° S	HMS			
	⁰⁴ NI	0 .5	1	1.5	2	2.5 3
AI	Ag			×		

Picture credit: Nadia Fomin

Detector Calibrations & Corrections

- Beam energy calibration
- Beam Current Monitor (BCM) Calibrations
- Reference Time Cuts
- Timing window cuts
- Cherenkov Calibrations
- Calorimeter Calibrations
- Hodoscope Calibrations
- Drift Chamber
- Momentum & Angle Offsets
- Boiling Corrections
- Coulomb Corrections
- Hodoscope Cuts

- Detector Efficiency
 - Cherenkov
 - Calorimeter
 - Beam current monitor
- Electronic Dead Time Efficiency
- Computer Dead Time Efficiency
- Multi-Track reconstruction
- Target deformations

Born Cross Section

• This is the actual cross section that we will use to take our ratios

$$\sigma_{Born}(x,Q^2) \equiv \frac{Y_{data}}{Y_{MC}} \cdot \sigma_{Born}^{Model}$$

- Y_{data} will be extracted from our data
- Y_{MC} will be extracted from a Monte Carlo simulation of our spectrometer weighted by the radiated cross section model
- CURRENTLY we ONLY have statistical uncertainties.

XS Ratios (9.2 GeV 8°) - new

Nuclear Dependences: a₂ vs A & a₂ vs N/Z

Thanks

Spokespeople:

 John Arrington (LBL), Nadia Fomin (UTK) & Dave Gaskell (JLab)

Graduate Students:

 Cameron Cotton (UVA), Abishek Karki* (MSU), Casey Morean* (UTK), Ramon Ogaz (UTK), Abhyuday Sharda (UTK), Sebastian Vasquez (UCR), Zoe Wolters (UNH), Jordan O'Kronley (UTK)

Other Collaborators:

 Burcu Duran (NMSU), Miguel Arratia (UCR), Dipangkar Dutta (MSU), Shujie Li (LBL), Dien Nguyen (UTK), Nathaly Santiesteban (UNH), Xiaochao Zheng (UVA), Tyler Hague (JLab)

DOE award: DE-SC0013615

* Graduated

Cherenkov Detector Efficiency

Li target Melting Before

Uneven raster distribution suggests target deformation from melting

Hodoscope geometric configurations

Turning off a section of the detector where we don't expect any x > 1 events in order to increase DAQ efficiency at high x

Jefferson Lab & Beam details

- Jlab delivers up to 70 uA of electrons at a frequency of 249.5 MHz
- Energy of the beam delivered is up to 11 GeV
- Beam size is about 600 um in diameter

Experimental Setup (SHMS)

- Noble Gas Cherenkov: Particle ID
- Drift Chambers: Tracking
- Hodoscope (Scintillator Paddles):
 Primary Trigger
- Heavy Gas and Aerosol
 Cherenkov: UNUSED
- Calorimeter: Energy

Credit: Burcu Duran

First Look at Nuclear Dependences

Inclusive vs Exclusive Experiments

Weinstein L, Cohen E and Higinbotham D The CaFe Experiment: Short-Range Pairing Mechanisms in Heavy Nuclei Proposal to Jefferson Lab PAC 44

Next steps, issues

- Hodoscope configurations Simulations
 - Geometric cut to exclude low x particles
- Melting/damaged targets
 - Lithium & Tin
- Target contamination
- Optics
- Systematic Errors

