

Near-threshold cross-section determination for coherent J/ ψ

meson photoproduction off deuteron

 $\gamma \: d \to J/\psi \: d'$

Nishadi Silva Advisor: Yordanka Ilieva University of South Carolina

Summer school "Light-ion physics in the EIC era", 19 – 27 June 2025

This work has been supported in part by NSF PHY-2412777

Introduction

- Project Goal: Estimate differential and/or total cross section
- **Technique:** $\gamma d \rightarrow J/\psi d'$ is measured in untagged quasi-real (virtual photon with very small virtuality) photoproduction
- Means: Data from Jefferson Lab E12-11-003B
- Purpose: Learn about transverse gluon distribution in deuteron (following on the work done for the nucleon)

The J/ ψ Meson

- Bound state of c and \overline{c} pair, called "charmonium"
- Rest mass: 3.0969 GeV/c^2
- Mean lifetime: 7.2×10^{-21} s
- Decay modes we are interested in

$$J/\psi \to e^+e^- , B.R \sim (5.94 \pm 0.06)\%$$

$$J/\psi \to \mu^+\mu^- , B.R \sim (5.93 \pm 0.06)\%$$

- Experimental Aspects:
 - Clean leptonic decay channels
 - Photo-production is accessible with electron beams
 - Gluonic form factor of target can be extracted from invariant cross section

J/ ψ Photoproduction World Database

Figure from: L. Pentchev (GlueX Collaboration), Threshold Charmonium Production at JLab, BEACH 2024, June 3 – 7 2025, Charleston, SC.

CLAS12 Detector

- Central Detector (CD): Covers $5^{\circ} \le \theta \le 35^{\circ}$ includes:
 - Back Angle Neutron Detector (BAND)
 - Silicon Vertex Tracker (hidden)
 - Barrel Micromesh Tracker (hidden)
 - Central Time-of-Flight (CTOF)
 - Central Neutron Detector (CND)
 - Superconducting Solenoid Magnet
- Forward Detector (FD): Covers $5^{\circ} \le \theta \le 35^{\circ}$ and $\Delta \theta = 2\pi$, includes:
 - High Threshold Cherenkov Counter (HTCC)
 - Forward Tagger (FT)
 - Torus magnet
 - Drift Chambers (DC)
 - Hidden Cherenkov counters
 - Time-of-Flight (TOF)
 - Electromagnetic Calorimeter (EC)
 - Pre-shower Calorimeter(PCAL)

The E12-11-003B experiment

- Quasi-Real Photoproduction off Deuterium Target (LD₂)
- Reaction Channels Studied:
 - $ep_{bound} \rightarrow e'J/\psi p$
 - $en_{bound} \rightarrow e'J/\psi n$
 - $ed \rightarrow J/\psi d'$
 - $ed \rightarrow J/\psi pn$
- Experimental Setup:
 - Beam: 10.6 GeV electron beam
 - Target: Liquid deuterium
 - Quasi-real photons: scattered electron not detected, virtual photon with $Q^2 \approx 0.$
- Detector & Data analysis:
 - Use CLAS12 to detect e^+ , e^- ,and recoil deuteron
 - Apply PID cuts to identify clean leptons and hadrons
 - Reconstruct J/ ψ invariant mass, study distributions, apply exclusivity cuts
- My Focus is on:
 - Analysis of coherent production: $\gamma^*d \rightarrow J/\psi d'$ (no previous or concurrent experiments and data)
 - Extraction of differential and/or total cross section

Y. Ilieva, B. McKinnon, P. Nadel-Turonski, V. Kubarovsky, S. Stepanyan, Z.W. Zhao, Study of J/psi Photoproduction off Deuteron, JLab E12-11-003B, 2018

Data Analysis Plan

- Yield extraction:
 - 1. Particle identification
 - i. Electron and positron identification
 - ii. Deuteron Identification
 - iii. J/Psi meson reconstruction
 - 2. Reaction selection via four-momentum conservation
 - 3. Background subtraction
- Luminosity determination
- Determination of the CLAS12 acceptance for coherent process
- Binning studies for cross section extraction

Results From Exploratory Studies

e+ e- Invariant Mass

Event Selection (cuts):

- At least one e^- , at least one e^+ , and at least one good d
- The leptons are detected in the Forward Detector
- Quasi-real photoproduction: $ed \rightarrow e'd'e^+e^-$ with a forward-going, undetected (missing) e'
- Q²<5
- $|MM^2| < 1$

$$Q^{2} = -q^{2} = -(\vec{p}_{e} - \vec{p}_{e'})$$
$$MM^{2} = \left(\tilde{P}_{e} + \tilde{P}_{d} - \tilde{P}_{e^{-}} - \tilde{P}_{e^{+}} - \tilde{P}_{d'}\right)^{2} = IM_{e'}$$
$$IM_{J/\psi} = \sqrt{(\tilde{P}_{e^{+}} + \tilde{P}_{e^{-}})^{2}} = M_{J/\psi} = 3.097 \, GeV$$

Electron and Positron Identification in CLAS12

 $E_{dep,Total} = E_{PCAL} + E_{ECIN} + E_{ECOUT}$ e- Sampling Fraction vs Momentum

- Tracking and B-field: Give momentum *p*
- High Threshold Cherenkov Counters (HTCC): Separate electrons with momenta below 4.9 GeV from charged hadrons.
- Electromagnetic Calorimeter (ECAL):

 → Fully contains EM showers from e⁻, e⁺
 → e⁻, e⁺ deposit significant energy that scales with p

 \rightarrow Sampling fraction :

 $SF = \frac{E_{dep,Total}}{p}$ varies little with p for e^- , e^+ ; parameterized SF(p) cut applied

• Time-of-Flight (TOF) & Start Counter: Particle ID of charged hadrons

Deuteron Identification in CLAS12

Deuteron β vs P

- Tracking and B-field: Give momentum p and path length to TOF detector L_{TOF}
- TOF detector: measures flight time t_{TOF}
- Particle speed is reconstructed:

 $\beta_{\text{measured}} \equiv \beta = L_{TOF} / t_{TOF}$

Deuteron events clearly visible; substantial accidental background. Lighter hadrons are removed from sample by pre-selection criteria.

Background Reduction with TOF

- Initial $\Delta\beta$ cut range selected for lepton pair and d : [-0.2,0.2]
- $\beta_{\text{measured}} \equiv \beta = L_{TOF}/t_{TOF}$ $\beta_{\text{calculated}} = \frac{p}{\sqrt{p^2 + m^2}}$ $\Delta\beta = \beta_{\text{measured}} \beta_{\text{calculated}}$
- The $\Delta\beta$ cut further reduces the accidental background and removes lower momentum protons in e⁺ and e⁻ samples
- In next analysis steps the cut will be tightened

J/ψ Identification

e⁺ e⁻ Invariant Mass

e⁺ e⁻ Invariant Mass

- A fraction of data sample shown (allows fast processing)
- High statistics and clear signature of π^0 mesons will use the π^0 sample to refine the PID of electrons, positrons, and deuterons, and for systematic studies

Summary

- Started investigation of J/ψ production via the reaction $\gamma d \rightarrow J/\psi d'$ focusing on $J/\psi \rightarrow e^+e^-$ decay channel.
- Data taken with CLAS12 at Jefferson Lab in E12-11-003B experiment.
- All final-state particles, e^+ , e^- and d' detected.
- Ongoing work:
 - Refine and finalize PID cuts
 - Study and apply further background reduction methods using π^0 events

References

- Tyson, Richard (2023) J/ ψ near-threshold photoproduction off the proton and neutron with CLAS12. PhD thesis, University of Glasgow.
- CLAS12ForwardTagger(FT)Technical Design Report, December7,2012, VersionV2.0
- K. Nakamura et al. (Particle Data Group), JP G 37, 075021 (2010) (URL: http://pdg.lbl.gov)
- The CLAS12 Spectrometer at Jefferson Laboratory, Volume 959, 2020

Cross checking β using path length and FTOF hit time data

63 files <u>spring 2019</u>

The Event Builder β and β_{TOF} are different. To understand how Event Builder β is determined. Study further.

d β vs Momentum

Events in the jpsi train:(.../train/jpsi)

- e⁺e⁻ pair + at least one other positive charged particle: At least 1 electron, 1 positron
 - And more than 1 total positive charged particle
- Two or more same-sign electrons/positrons + additional positive particles:
 - \geq 2 electrons and \geq 1 positive charged particle OR
 - 2 positrons and > 2 positive charged particles
- $\mu^+\mu^-$ pair in the Forward Detector + at least one other positive particle (FD):

At least 1 muon⁻, 1 muon⁺

And > 1 positive particle in the Forward Detector

- Two or more same-sign muons + additional positive particles (FD):
 - \geq 2 muon⁻ and \geq 1 positive (FD) OR
 - \geq 2 muon⁺ and > 2 positive (FD)

- High-momentum e⁺e⁻ pair: At least 1 high-momentum electron and 1 highmomentum positron
- Two or more high-momentum same-sign electrons or positrons:
 - ≥ 2 high-momentum electrons OR
 - ≥ 2 high-momentum positrons
- High-momentum µ⁺µ⁻ pair: At least 1 high-momentum muon⁻ and 1 high-momentum muon⁺
- Forward Tagger electron + Forward Detector proton + highmomentum e⁺ or e⁻:
 - At least 1 electron in FT
 - And 1 proton in FD
 - Plus either a high-momentum electron or positron

Data Sample

CLAS12 Run Group B Data

- Runs: Spring2019 (249), Fall2019 (181), and Spring2020 (122) -> Total 552 runs
- Fall2019/torus+1/pass2/v1/dst/train/jpsi/
- spring2019/torus-1/pass2/v0/dst/train/jpsi/
- spring2020/torus-1/pass2/v1/dst/train/jpsi/

Run Period	Beam Energy (GeV)
Spring 2019	10.6
Spring 2019	10.6
Spring 2019	10.2
Fall 2019	10.41
Spring 2020	10.39

- $Q^2 = -q^2 = -(k k')^2 \rightarrow |\vec{q}|^2 = 2E_{beam}|\overrightarrow{p_{miss}}|(1 \cos\theta_{miss})$
- Transferred momentum= $\vec{q} = \overrightarrow{p_1} \overrightarrow{p_2}$
- $|\vec{q}|^2 = |\overrightarrow{p_1} \overrightarrow{p_2}|^2 = |\overrightarrow{p_1}|^2 + |\overrightarrow{p_2}|^2 2 |\overrightarrow{p_1}| |\overrightarrow{p_2}| \cos\theta$
- In high energy limit, we assume, $|\overrightarrow{p_1}| = |\overrightarrow{p_2}| = p$
- $|\vec{q}|^2 = p^2 + p^2 2p^2 \cos\theta = 2p^2 2p^2 \cos\theta = 2p^2(1 \cos\theta) = 2|\vec{p_1}|$ $|\vec{p_2}|(1 - \cos\theta)$
- $|\vec{p_1}| = E_{beam}$: incoming beam electron energy (assuming it's a massless or relativistic electron).
- $|\vec{p_2}| = |\vec{p_{miss}}|$: magnitude of the missing momentum vector
- θ_{miss} : polar angle (θ) of the missing momentum vector (w.r.t. beam axis),