η' Photoproduction at GlueX (Hall D), Brief introduction about ALERT Experiment(HALL B)

Churamani Paudel (Post-Doc at New Mexico State University)

[Light ion Physics-Summer School at FIU]

06/25/2025

Miami, FL, USA

GlueX Experiment and Hybrid Search Program

- Objective of GlueX Experiment: Mapping out the spectrum of light exotic and hybrid mesons, enhances the understanding of quantum chromodynamics (QCD).
- Hybrid Mesons with Unusual Quantum Numbers: Some hybrid mesons such as $\pi_1(1600) J^{PC}$: 1^{-+} exhibit quantum numbers that do not follow naive quark-antiquark model.
- Production Mechanisms for Exotic Mesons: The production of the lightest exotics involves an analogus exchange process with ordinariy pseudoscalar mesons such as η' , π^0 , and η involving Regge Exchanges.
- Dual Parity Exchange Contributions: Hybrid exotic mesons see contribution from both the natural (P(-1)^J = 1) and unnatural $(P(-1)^{J}=-1)$ parity exchanges which can also be seen in the ordinary pseudoscalar mesons.

Ordinary Meson

Hybrid Meson

Beam Asymmetry (Σ)

Differential cross-section for the photons polarized perpendicular or parallel to the reaction plane, *s* and *t* are Mandelstam variables.

Beam Asymmetry give access to exchange processes

Putting new constraints to Regge models, understanding production mechanism

Results from GlueX Collaboration (PRC,100,052201(2019),5,052201)

Motivation

$$\gamma \mathbf{p} \rightarrow \eta' \mathbf{p}, \ \eta' \rightarrow \eta \pi^{+} \pi, \eta \rightarrow \gamma$$

$$\eta' \rightarrow \eta \pi^{0} \pi^{0}$$

$$\eta \rightarrow \gamma \gamma, \ \pi^{0} \rightarrow \gamma \gamma$$

First results with $\approx 20\%$ of data For the decay mode $\eta' \to \eta \pi^+ \pi^-$ Natural parity exchange dominance Higher -t limit and Production Mechanism

Nucl.Instrum.Meth.A 987 (2021) 164807

GlueX Beamline, Detector & Polarization

Beam Asymmetry Method

$$\sigma_{pol}(\phi,\phi_{\gamma}) = \sigma_{unpol}[1 - P_{\gamma}\Sigma cos(2(\phi - \phi))]$$

$$Y_{\parallel}(\phi, \phi_{\gamma} = 0) \propto N_{\parallel}[\sigma_0 A(\phi)(1 - P_{\parallel} \Sigma cos 2\phi)]$$

$$Y_{\perp}(\phi, \phi_{\gamma} = 90) \propto N_{\perp}[\sigma_0 A(\phi)(1 + P_{\perp} \Sigma cos 2\phi)]$$

YIELD ASYMMETRY (YA) =
$$\frac{Y_{\perp} - F_R Y_{\parallel}}{Y_{\perp} + F_R Y_{\parallel}} = \frac{(P_{\perp} + P_{\parallel})\Sigma cos^2}{2 + (P_{\perp} - P_{\parallel})\Sigma cos^2}$$
$$\mathbf{F_R} = \frac{\mathbf{N}_{\perp}}{\mathbf{N}_{\parallel}} \approx 1$$

Invariant Mass Spectra

Angular Distributions, Yield Asymmetry, and SUM plot for the decay $\eta' \to \eta \pi^+ \pi^-$

JPAC Model (η') Beam Asymmetry

-t [GeV²]

Clas12 Detector

Source: clas12wiki

Clas12 Detector

Source : google

The ALERT Detector

of Flight (ATOF).

ALERT ToF

- Time-of-Flight: use for PID
- Small barrel of segmented scintillators
- The ToF measurement is degenerate for ²H and ⁴He, but dE/dx can distinguish the two nuclei bands

e+A->e'+A (or A-1 or shower)

ALERT HDC

- Aluminum wire: 2mm spacing
- 20-degree stereo angle (hyperbolic shape)
- 5 superlayers, each composed of 2 layers
- 576 signal wires:
 - 47, 56, 72, 87, 99 for each superlayer.

ALERT comprises two sub-detectors: A Hyperbolic Drift Chamber (AHDC) and A Time

- Identify light ions: p, ²H, ³H, ³He, ⁴He.
- Detect the lowest momentum possible.

ATOF from GEMC

Physics Processes with ALERT

Light Gas Cherenkov Detector (For SoLID)

Cherenkov Light is emitted if $\beta > 1/n$

Cherenkov radition->Reflection (Mirrors)->PMTS PhotoCathode->PhotoElectric Effect->Electrons ->Measure ADC Pulse->Calibrate->Get No. Of Optical Photons vs angle

(Low density and low refractive index : CO2)

is the refractive index

Summary

- η' : Paper writing in progress
- ALERT : Experiment currently running, data, software: reconstruction, calibration : many works are ongoing.
- Clean elastics seen (data)