Exercise 1

Consider two nucleons each of mass $m=938~{\rm MeV}/c^2$ interacting via a central potential given by

$$V(r) = \begin{cases} -V_0 & \text{for } r \le R\\ 0 & \text{otherwise} \end{cases}$$

where V_0 is positive and R = 1.45 fm.

- 1. Phase Shift Computation:
 - Set $V_0 = 20 \,\text{MeV}$.
 - Use the Numerov algorithm to compute the phase shifts $\delta_{\ell}(E)$ for $\ell = 0$ (S-wave), $\ell = 1$ (P-wave), and $\ell = 2$ (D-wave), as a function of the energy E in the range 0–200 MeV.
 - Plot the phase shifts δ_{ℓ} versus energy for each partial wave.
- 2. Radial Wave Functions:
 - Compute and plot the radial wave functions $u_{\ell}(r)$ for a few representative energies: E = 1, 10, 100, 200 MeV, for $\ell = 0, 1, 2$.
- 3. Cross Sections:
 - Compute the partial cross sections

$$\sigma_{\ell}(E) = \frac{4\pi}{k^2} (2\ell + 1) \sin^2 \delta_{\ell}(E)$$

and the total cross section

$$\sigma_{\rm tot}(E) = \sum_{\ell=0}^{2} \sigma_{\ell}(E)$$

as a function of energy.

- Plot the total and partial cross sections versus energy.
- 4. Validation via Analytical S-wave:
 - The S-wave phase shift δ_0 can be obtained analytically for a square well.
 - Use the analytic expression to validate your numerical code for $\ell = 0$. Compare the analytic and numeric phase shifts and cross sections.
- 5. Increased Potential Depth:
 - Repeat steps 1–4 with $V_0 = 60 \,\mathrm{MeV}$.

- Note that there is an ambiguity in the definition of the phase shifts. This will make your phase shift in S-wave discontinuous when approaching $\pi/2$. Make your phase shift continuous by adding the appropriate phase.
- 6. Repulsive Potential:
 - Repeat steps 1–4 with $V_0 = -60 \,\mathrm{MeV}$.

Implementation

We seek the solution u(r) = r R(r) of the radial equation:

$$-\frac{\hbar^2}{2\mu}u''(r) + V(r)\,u(r) + \frac{\hbar^2}{2\mu}\frac{\ell(\ell+1)}{r^2}\,u(r) = E\,u(r)\,,\tag{1}$$

where

$$E = \frac{\hbar^2 k^2}{2\mu}$$
, and $\mu = \frac{m}{2}$. (2)

We define

$$v(r) = \frac{2\,\mu}{\hbar^2} \,V(r)\,,\tag{3}$$

and rewrite the equation above as

$$u''(r) + \left[k^2 - v(r) - \frac{\ell(\ell+1)}{r^2}\right] u(r) = 0,$$

or

$$u''(r) + K(r)u(r) = 0, (4)$$

with

$$K(r) = \frac{2\mu}{\hbar^2} \left[E - V(r) \right] - \frac{\ell(\ell+1)}{r^2} \,. \tag{5}$$

As $r \to 0$, $u(r) \to r^{(\ell+1)}$. We use two grid points close to zero (e.g., $r_1 = h$ and $r_2 = 2 \times h$, where h is the step in r), and the solution calculated in these points, that is $u_1 = u(r_1) = h^{\ell+1}$ and $u_2 = u(r_2) = (2 \times h)^{\ell+1}$, to start building the solution outwards using the Numerov's method.

The subsequent u_i 's calculated at r_i 's are obtained using the following algorithm

$$u_{i+1}\left(1+\frac{h^2}{12}K_{i+1}\right)-u_i\left(2-\frac{5h^2}{6}K_i\right)+u_{i-1}\left(1+\frac{h^2}{12}K_{i-1}\right)+O(h^6)=0.$$

You may use the notebook PhaseShiftExercise to implement and test your solution.

Exercise 2

Consider a reduced form of the Minnesota potential that consists of the sum of two Gaussians in the radial coordinate r:

$$v(r) = V_R(r) + V_t(r),$$
 (6)

where

$$V_R(r) = V_{0R} e^{-\kappa_R r} , \qquad (7)$$

$$V_t(r) = -V_{0t} e^{-\kappa_t r} . (8)$$

The parameters defining v(r) are given in Table . The Minnesota potential is used in many-body calculations of nuclei.

V_{0R}	$200.0{\rm MeV}$	κ_R	$1.487{\rm fm}^{-2}$
V_{0t}	$178.0{\rm MeV}$	κ_t	$0.639{ m fm}^{-2}$

Calculate the phase shifts and partial cross sections in S- D- and P-wave.

Exercise 3

The scattering of a nucleon from Oxigen-16 (mass number A = 16) can be modeled using a central Wood-Saxon interaction:

$$v(r)_{\rm WS} = -V_c \, \frac{1}{1 + e^{(\frac{r-R_c}{a})}} \tag{9}$$

where the parameters are:

$$V_c = -52.06 \text{ MeV}, \quad R_c = r_c A^{1/3},$$

 $r_c = 1.26 \text{ fm}, \quad a = 0.662 \text{ fm},$

Calculate the phase shifts and partial cross sections in S- D- and P-wave. Note, you will have to use the appropriate reduced mass of the systems.