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Abstract

In this document I report thedetails ofmy lectures ongeneralizedpartondistributions func-
tions for light-nuclei in Impulse Approximation with some focus on the Light-Front Fock
expansion.
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Open questions on Deep Inelastic Scattering processes.

In this section we introduce two still open questions on the Deep Inelastic Scattering (DIS) physics which motivate
study o novel processes in particular for nuclear targets.

Contents

Recap of DIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

The proton spin crsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

The nuclear EMC effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Recap of DIS

Here I recap some features of DIS of protons. Some details can be found for example in Refs. 1, 2.

Figure 1. DIS diagram.

The cross-section is given by:

dσ

dΩk′dE′ =
α2

q4
Ek
Ek′

LµνWµν (1)

where q = k′ − k, Lµν the leptonic tensor:

Lµν =
1

2

∑
s,s′

[
ū(k′, s′)γµu(k, s)]∗

[
ū(k, s)γνu(k′, s′)] =

1

2

∑
s,s′

⟨k′, s′|Jµ(0)|k, s⟩⟨k, s|Jν(0)|k′, s′⟩ (2)
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while the hadronic tensor:

Wµν =
1

4π

∑
S,SX

∫
d3PX

(2π)3EX
⟨P, S|Jν(0)|PX , SX⟩⟨PX , SX |Jµ(0)|PS⟩δ(P − PX + k − k′)(2π)4 (3)

=
1

4πM

∑
S,SX

∫
d4ξ

d3PX
(2π)3EX

eiξ(q+P−PX)⟨P, S|Jν(0)|PX , SX⟩⟨PX , SX |Jµ(0)|PS⟩

=
1

4πM

∑
S,SX

∫
d4ξ

d3PX
(2π)3EX

eiξq⟨P, S|eiP̂ ξJν(0)e−iP̂ ξ|PX , SX⟩⟨PX , SX |Jµ(0)|PS⟩ (4)

=
1

4πM

∑̄
S

∫
d4ξeiξq⟨P, S| Jµ(ξ)Jν(0)︸ ︷︷ ︸

non local

|P, S⟩ = 1

4πM

∑̄
S

∫
d4ξeiξq⟨P, S|[Jµ(ξ), Jν(0)]|P, S⟩. (5)

One should notice that for causality:

[Jµ(ξ)Jν(0)] = 0 (6)

for space-like distances, i.e. ξ2 < 0. Therefore, non trivial solution are found for ξ2 ≥ 0. Let us define Light-Cone
(LC) coordinates:

ξ± =
1√
2
(ξ0 ± ξ3) (7)

therefore:

ξ2 = ξ20 − ξ23 − ξ⃗2⊥ = (ξ0 − ξ3)(ξ0 + ξ3)− ξ⃗2⊥ = 2ξ+ξ− − ξ⃗2⊥. (8)

In general:

A ·B = A+B− +A−B+ − A⃗⊥ · B⃗⊥ (9)

hence in the exponential we have:

eiξ·q = ei(ξ+q−+ξ−q+−ξ⃗⊥·q⃗⊥). (10)

We can choose to work in this frame: i) q⃗⊥ = 0⃗⊥, ii) q2 → ∞ and q3 < 0. Within this condition we have that
q− → ∞ and q+ << q−. The leadint term in the exponential is:

eiξ+q− . (11)

This object oscillates very fast, thus the maximum contribution is given for ξ+ → 0. From the causality condition
we therefore have:

ξ+ → 0; ξ ≥ 0. (12)

But now ξ2 = −ξ⃗2⊥ ≥ 0 the only possibility is that x⃗i2⊥ = 0 = ξ = 0, we prove the LC dominance. In the polarized
case one needs to decompose the leptonic and hadronic tensors in a symmetric and anti-symmetric parts and the
cross section is now given by the product of the twon anti-symmetric terms:
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Lµ,ν = Lµ,νS + Lµ,νA (13)

with:

Lµ,νA = 2hεµνρσk
ρqσ (14)

with h helicity (conserving form ∼ 0). While:

Wµ,ν
A = iεµνρσq

ρ

{
Sσ
g1(x,Q

2)

Mν
+
[
p · qSσ − S · qPσ

]} g2(x,Q
2)

M2ν2
. (15)

In the Bjorken limit Q2/(M2ν2) → 0, therefore the g2 can be neglected. And now we have the spin-dependent
Structure Functions (SFs). We therefore can compare the unpolarized and longitudinally polarized Parton Distri-
bution Functions (PDFs):

q(x) =
1

4π

∫
dz−e

ixP+z−⟨P, S|ψ̄q(0)γ+ψq(z−)|P, S⟩ (16)

∆q(x) =
1

4π

∫
dz−e

ixP+z−⟨P, S|ψ̄q(0)γ+γ5ψq(z−)|P, S⟩

where ψq(z) is the q− quark operator field evaluated at the z position. The relation with the relative SFs:

F2(x) =
∑
q

e2qxq(x) (17)

g1(x) =
1

2

∑
q

e2q
(
∆q(x) + ∆q̄(x)

)
.

The interpretation is:

q(x) = q↑(x) + q↓(x) (18)
∆q(x) = q↑(x)− q↓(x).

Moreover, the total number of quark of given flavor (charge conservation) is given by:

q =

∫
dx q(x) (19)

while

∆q = n↑ − n↓ = ⟨P, S|ψ̄q(0)γ+γ5ψ(0)|P, S⟩︸ ︷︷ ︸
local axial current

. (20)

The proton spin crsis

Some details can be found inRef. 3 If we canmeasure the spin-dependent SFs one can access to the spin contriburion
of quarks to the proton spin. Let us define the first moments of g1:
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Γp =

∫
dx gp1(x) =

4

9
(∆u +∆ū) +

1

9
(∆d +∆d̄) +

1

9
(∆s +∆s̄) (21)

for the neutron we consider isospin symmetry:

Γn =

∫
dx gn1 (x) =

4

9
(∆d +∆d̄) +

1

9
(∆u +∆ū) +

1

9
(∆s +∆s̄) (22)

Let us define:

g3A = (∆u +∆ū)− (∆d +∆d̄) (23)
g8A = (∆u +∆ū) + (∆d +∆d̄)− 2(∆s +∆s̄)

g0A = (∆u +∆ū) + (∆d +∆d̄) + (∆s +∆s̄)

therefore:

Γp(n) =
1

9

[
±3

4
g3A +

1

4
g8A + g0A

]
. (24)

The axial currents g3A and g8A can be measured in the baryon β decay:

g3A = 1.2670± 0.0035 (25)
g8A = 0.585± 0.025

Therefore one would get:

g0A = g8A + 3(∆s+∆s̄) (26)

therefore if we neglect the strange (or is very difficult to have polarized strange quarks in the proton) one would
expect that

g0A ∼ g8A ∼ 0.6 (27)

let us remind that:

g0A ∼ 2⟨SquarkZ ⟩ = 2
1

2

∑
q

∫
dx∆q(x) (28)

i.e. the spin contribution of quarks in the proton. Then data came and g0A ∼ 0 this is spin crisis, because any model
suggested that this contribution should be dominant one. Now, precise data are consistent with 30%. Therefore,
in order to describe the spin structure of hadron one needs to access other contributions as the orbital angular
momentum of of quarks. To this aim we need new distributions such as Generalized Parton Distribution Functions
(GPDs) extractedn in exclusive processes.

The nuclear EMC effect

This second topic is related to a nuclear problem when a phenomenological study started to test QCD and nuclear
theory. The experimental observable providing the most direct test of nuclear effects on the parton distributions of
bound nucleons, with respect to the free ones, is the ratio
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R(x) =
FA2 (x)

F d2 (x)
, (29)

where FA2 is the structure function of a nucleus with A nucleons and F d2 is referred to the deuterium nucleus, the
deuteron. One should notice that the Bjorken variable x:

x =
Q2

2Mν
=
MA

M

Q2

2MAν
(30)

where MA (M ) is the nucleus (nucleon) mass, ranges, for a nuclear target, between 0 and MA/M ∼ A. At a
first sight, one could think that the parton structure of the bound nucleon is only slightly modified by the nuclear
dynamics. Indeed, the average binding energy of a nucleon in the nucleus is of the order of MeV, and its average
momentum is at most a few tents of MeV. In other words, the ratio Eq. (29) should be very close to one, for any x.
It is not surprising therefore that, when the European Muon Collaboration at CERN published the data shown in
Figure 2 4 for the Iron (A=56) target, showing effects as big as 15 %with a complicated behavior, a lot of interest and
excitement arose. It seemed that conventional dynamics could not explain anything like that. Many authors tried to
suggest exotic scenarios where, for example, partons were shared among different nucleons in the nuclear medium,
or the QCD evolution equation themselves were different for nuclear parton distributions. The reader can find a
good report on the status of the present understanding of this effect, named EMC effect after its discovery, in Ref.
5. After more than 30 years and thousands of published papers on this topic, one can summarize the situation as
follows:

●  

■  

▲  

▼  

Ca, SLAC

Ca, NMC

Fe, SLAC

Fe, BCDMS

F
2

A

F
2

d

x

Figure 2. EMC effect shown through the ratioR(x) 5.

• the behavior in the region x < 0.2, the so called “shadowing” region, which can be shown to describe “coherent
diffusion”, i.e., interactions involving partons belonging to different nucleons, is nowadays basically understood;
these kind of effects are not discussed in the present work and will not be described in more detail;
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• the region 0.2 < x < 0.8, where the effect grows up logarithmically withA and depends weakly onQ2, shows
an evident minimum. This region is the genuine EMC effect, still to be really understood. In this region, it can
be shown that the DIS process involves distances d < 1fm, smaller then the dimensions of the nucleons, so
in this region the incoherent diffusion is dominant and the virtual photon interacts directly with the partons,
whose momentum distributions can be modified by the nuclear medium.

• the region x > 0.8, where the behavior is easily understood kinematically (the deuteron parton distributions
are defined up to x = 2).

So here is discussed now the most interesting part, the “EMC region”. Two kind of modifications can be distin-
guished:

i) conventional Nuclear Physics effects, i.e., the ones described by realistic nuclear wave functions;
ii) exotic effects, invoking 6 quark clusters, density dependent nucleon structure, presence of other degrees of

freedom to be taken into account in the nuclear Hamiltonian, with respect to those of the usual Schrödinger
equation approach.

Soon after the discovery of the EMC effect, it was shown that the first kind of effects, if properly considered in a
realistic framework, which is possible at least for light nuclear targets, can describe the EMC region, at least in part.
All the different exotic mechanisms, with a proper set of parameters, can explain the EMC region. The problem is
that these approaches are not microscopic ones, and that the available measurements cannot distinguish between
them.

So, after more than 40 years, the EMC effect lacks a clear explanation. The only possibility to really understand the
reactionmechanism of hard electromagnetic scattering off nucleus, is to go beyondDIS, i.e., using SiDIS or exclusive
DIS. The exclusive processes, aiming at measuring nuclear GPDs, are the ones of interest in this work and will be
thoroughly described in the next chapter.

Generalized Parton Distributions

For this section, most of the details can be found in this review 6.

Contents

Extraction of GPDs from the correlator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

GPD properties: Forward limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

GPD properties: first moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

GPD properties: Moments of GPDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Energy Momentum Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

GPDs and hadron tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Cross-section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

From the previous discussion, it is clear that processes beyond DIS can help dramatically to explain several aspects
of hadron structure. A typical process, exclusive in nature, is Deeply Virtual Compton Scattering (DVCS), which is
given in Fig.2.3. It is a generalization of DIS, with an extra real photon, so in the final state the momentum of the
target changes. It is necessary to generalize the parton distribution and in this way GPDs are introduced in Refs.7,
8. Here is fixed the kinematics of the process thinking to Fig. 3. P and P ′ are the 4-momenta of the initial and of
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the final state of the target, k and k′ those of the parton. The process is therefore: eN −→ e′N ′γ′. ∆ = P ′ − P
is the momentum transferred to the target with t = ∆2. Now the considered frame is the Infinite Momentum
Frame (IMF), so that the target momentum is along the z-axis and it is natural to describe the process through the
light-cone components of the momenta:

P± =
1√
2

(
P 0 ± P 3

)
(31)

Defining the 4-vector:

P =
(P + P ′)

2
, (32)

another variable can be introduced :

ξ =
P+ − P ′+

P+ + P ′+ = − ∆+

2P
+ , (33)

which is called skewedness end its range of definition is [−1, 1]. In this kind of processes there are two momentum
transfers: the virtual photon momentum Q2 = −q2 which is very high, to distinguish details of the target, and
t = ∆2, the momentum transferred between the initial and the final state of the nucleon, which has to be small
because the cross-section of the process strongly decreases by increasing the momentum transfer. In other words,
if the momentum transfer is quite high, then it is very difficult that the target will not break up. Now the quark plus
momentum can be written (all the following formalism has been taken from Ref. 6):

k+ = (x+ ξ)P
+
,

k′+ = (k +∆)+ = (x− ξ)P
+
. (34)

γ

γ∗
,

P P’ = P+ ∆

e

e’

q
∆q−

k
x+ ξ

k+ ∆
x−ξ

Figure 3. The DVCS processes.

These relations are shown in Fig. ??:

In general, the variable x, which is the parton fraction of plus momentum, is different from xbj .
It is possible to classify the different dynamics described by GPDs through the regions of definition of x:

• x ∈ [ξ, 1]:
all the momentum fractions in the initial and final state are positive, so that an emission and a re-absorption
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Figure 4. Definition of GPDs kinematical variables.

of a quark is described. This sector is called DGLAP region, because here the pQCD evolution equations are
the ones of Ref. 9, 10, 11.

• x ∈ [−ξ, ξ]:
x+ ξ > 0 but x− ξ < 0. The quark reabsorbed by the nucleon has negative momentum, so it is an antiquark
with positive momentum which is emitted together with a quark of momentum x+ ξ. So there is an emission
of pair of quark and antiquark of the “sea”. This sector is called ERBL region, because here the pQCD evolution
equations are the ones of Ref.12, 13.

• x ∈ [−1,−ξ]:
All the momentum fractions are negative so there is an emission and a reabsorption of an antiquark with
positive momentum, this region is called ERBL.

These three cases are represented in the figure 5:

Figure 5. Different interpretations of GPDs in different kinematical regions

The GPDs can be now introduced using the light-cone correlator *.

FAλ,λ′ =
1

2

∫
dz−

2π
eixP

+z−⟨P ′, λ′|ψ(−1

2
z)γ+ψ(

1

2
z)|P, λ⟩

∣∣
z+=−→z ⊥=0

(35)

whereA label the kind of target of target,λ,λ′ are helicities in the initial and the final state respectively. It is important
to remark that nowFAλ,λ′ is a nondiagonalmatrix so it can not be interpreted as number density as in theDIS process.
It is possible to write FAλ,λ′ as follows:

Fλ,λ′(x, ξ, t) =
1

2P+

[
Hq(x, ξ, t)u(P ′, λ′)γ+u(P, λ) + Eq(x, ξ, t)u(P ′, λ′)

iσ+α∆α

2M
u(P, λ)

]
+ .. (36)

whereHq and Eq are the dominant leading-twist GPDs referred to the quark of flavor q, the dots (..) refer to sub-
dominant (higher-twist) objects. They parametrize the hadronic part of the diagram in the non diagonal case. The
helicity-dependent GPDs can be defined similarly, but they will not be discussed in the following.

*one should notice that, as in any hard process, in DVCS light-like distance are probed,i.e., z+ = z⃗⊥ = 0
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Extraction of GPDs from the correlator

In order to extra the GPDs from the collator, which is the quantity that usually are evaluated within some models.
To this use has been made of the Gordon identity in the Breit frame where:

Pin = P − ∆

2
(37)

Pfin = P +
∆

2
.

We shortly define: u = u(Pin, λ) and ū′ = ū(Pfin, λ
′) In this framework:

ū′γ+u = ū′
[
P+

M
+

i

2M
σ+µ∆µ

]
u (38)

from which obtain:

i

2M
∆µū

′σ+µu = ū′γ+u− P+

M
ū′u. (39)

. Therefore the LC correlator can be rewritten:

FH′H =
1

2P+

[
(H + E)ū′γ+u− E

P+

M
ū′u

]
. (40)

Now one needs to use the free spinors in order to evaluate the matrix elements. We consider the following conven-
tion:

u(P, ↑) = 1√
P+

(
P+Î +mγ0 + P⃗⊥ · a⃗⊥

) 1√
2


1
0
1
0

u(P, ↓) =
1√
P+

(
P+Î +mγ0 + P⃗⊥ · a⃗⊥

) 1√
2


0
1
0
−1


(41)

where:

ai =

(
0 σi
σi 0

)
. (42)

One therefore can prove that:

ū′γ+u =


2P+

√
1− ξ2 ifH = H ′

0 ifH ̸= H ′
(43)

Moreover:

ū′u =


2M√
1−ξ2

ifH = H ′

−∆x+i∆y√
1−ξ2

ifH ̸= H ′
(44)
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With this ingredients one can obtain:

F−+ =
1

2P+

[
E
P+

M

(
∆x + iδy√

1− ξ2

)]
= E

∆x + iδy

2M
√
1− ξ2

(45)

while:

F++ = (H + E)
√

1− ξ2 − E√
1− ξ2

. (46)

GPD properties: Forward limit

γ

γ∗
,

P P’ = P+ ∆

q
∆q− γ γ∗ ∗

q
q

P P

k
x+ ξ

k+ ∆
x−ξ

k
x x

k

Figure 6. DVCS process and its forward limit.

When t = 0 and P = P ′,H = H ′, studying Feynman diagrams one can see that the the matrix element expressed
by FAH,H′ has to reduce to the parton distribution. This yields a constraint for the GPDs, in particular:

Hq(x, 0, 0) = q(x), for x > 0,

Hq(x, 0, 0) = −q̄(−x), for x < 0 (47)

It is very important to notice that there is not a condition like this forEq because the ∆α term in Eq. (36) vanishes,
so there is no experimental way to access the information enclosed in E in the case of t = ξ = 0. It will be shown
that Eq carries information about the orbital angular momentum.

GPD properties: first moment

Let us consider the following integral:

∫ 1

−1
dx FAλ,λ′(x, ξ, t) =

1

2P+
⟨Pfin, λ′|ψ̄(0)γ+ψ(0)|Pin, λ⟩ (48)

=
1

2P+
ū′
[∫ 1

−1
dx HA(x, ξ, t)γ+ +

∫ 1

−1
dx EA(x, ξ, t)

i

2M
σ+µ∆µ

]
u

Recalling that the above local matrix element is parametrized in terms of elastic Form Factors (FFs):

⟨Pfin, λ′|ψ̄(0)γ+ψ(0)|Pin, λ⟩ = ū′
[
F1(t)γ

+ + F2(t)
i

2M
σ+µ∆µ

]
u (49)

Therefore we obtain:
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∫ 1

−1
dx HA(x, ξ, t) = F1(t) (50)∫ 1

−1
dx EA(x, ξ, t) = F2(t).

The dependence on ξ disappears due to Lorentz invariance (polinomiality properties that will not discussed here, see
Ref. 6).

GPD properties: Moments of GPDs

From polynomiality one gets:

∫ 1

−1
dx xH(x, ξ, t) = A(t) + ξ2D(t) (51)∫ 1

−1
dx xE(x, ξ, t) = B(t)− ξ2D(t) (52)

where A(t), B(t) andD(t) are Gravitational Form Factors (gFFs). In order to see that let us evaluate:

∫ 1

−1
dx xmFAλ,λ′(x, ξ, t) =

1

2

∫ 1

−1
dx xm

∫
dz−

eixP
+z−

2π
⟨P ′,H ′|ψ̄(0)γ+ψ(zz)|P,H⟩︸ ︷︷ ︸

J(z−)

(53)

=
1

2

∫ 1

−1
dx

∫
dz−

1

(iP+)m
dm

dzm−

[
eixP

+z−

2π

]
J(z−)

=
1

2

∫ 1

−1
dx

∫
dz−

1

(iP+)m
d

dz−

[
dm−1

dzm−1
−

eixP
+z−

2π

]
J(z−)

if we assume that ∫
dz− J(z−) = 0, (54)

then we can integrate by parts:∫ 1

−1
dx xmFAλ,λ′(x, ξ, t) = −1

2

∫ 1

−1
dx

∫
dz−

1

(iP+)m

[
dm−1

dzm−1
−

eixP
+z−

2π

]
d

dz−
J(z−) (55)

=
1

2(iP+)m
(−1)m

∫ 1

−1
dx

∫
dz−

eixP
+z−

2π

dm

dzm−
J(z−)

=
im

2(P+)m

∫
dz− δ(P

+z−)
dm

dzm−
J(z−)

=
im

2(P+)m
dm

dzm−
⟨P ′,H ′|ψ̄(0)γ+ψ(z−)|P,H⟩

∣∣∣
z=0

=
1

2(P+)m+1
⟨P ′,H ′|ψ̄(0)γ+

(
i
↔
∂
+)m

ψ(0)|P,H⟩ (56)

This is one of the matrix elements of the Energy Momentum Tensor (EMT).
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Energy Momentum Tensor

A nice review on the relation between EMT and mechanical properties of hadrons can be found in Ref. 14. Let us
consider the quark EMT:

Tµν(x) =
1

2
ψ̄(x)i

[
γµ

↔
∂
ν

+ γν
↔
∂
µ

ψ(x)

]
. (57)

Therefore T++(0) is related to the integral of GPDs, so that one needs to parametrize de EMT. In the Bright frame:

⟨P +
∆

2
|Tµν(0)|P − ∆

2
⟩ = ū′

[
A(t)

1

2
(γµP ν + γνPµ) +B(t)

i

4M
(σµαP ν + σναPµ)∆α +D(t)

∆µ∆ν − ηµν∆2

4M

]
u.

(58)

For the momentum and the Ji’s (spin) sum rules, we can neglect the last term (which is fundamental for other
properties of hadrons). By using again again Gordon identity:

⟨P +
∆

2
|Tµν(0)|P − ∆

2
⟩ = ū′

[
A(t)

PµP ν

M
+ [A(t) +B(t)]

i

4M
(Pµσνα + P νσµα)∆α

]
u. (59)

In order to prove the sum rule to interpret the role of these gFFs, let us introduce the following definitions. We start
with:

⟨
∫
dr⃗ Ô(r)⟩ =

⟨P |
∫
dr⃗ Ô(r)|P ⟩
⟨P |P ⟩

(60)

where in principle:

⟨P |P ⟩ = 2(2π)3P 0δ3(⃗0) (61)

of course can be useful to consider the limit:

⟨
∫
dr⃗ Ô(r)⟩ = lim

∆→0

⟨P ′|
∫
dr⃗ Ô(r)|P ⟩
⟨P ′|P ⟩

= lim
∆→0

∫
dr⃗ ⟨P ′|Ô(r)|P ⟩

⟨P ′|P ⟩
(62)

= lim
∆→0

∫
dr⃗ ⟨P ′|e−iP̂ ·rÔ(0)eiP̂ ·r⃗|P ⟩

⟨P ′|P ⟩
= lim

∆→0

∫
dr⃗ eir⃗·∆⃗

⟨P ′|Ô(0)|P ⟩
⟨P ′|P ⟩

= lim
∆→0

(2π)3δ(3)(∆⃗)
⟨P ′|Ô(0)|P ⟩

2(2π)3P 0δ(3)(∆⃗)
= lim

∆→0

⟨P ′|Ô(0)|P ⟩
2P 0

(63)

The other quantity that we need to evaluate is:

⟨
∫
dr⃗ riÔ(r)⟩ = lim

∆→0

1

2P 0

[
−i ∂

∂∆i
⟨P ′|Ô(0)|P ⟩

]
. (64)

We start with Momentum Sum Rule. One has to evaluate:

⟨P̂µ⟩ = lim
∆→0

⟨P +
∆

2
|T 0µ|P − ∆

2
⟩

2P 0
= lim

∆→0
A(t)

P 0P ν

2P 0M
ū′u = P νA(0) (65)
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therefore A(0) = 1. Of course, in general these quantities depend on the parton flavor, hence the full sum rule is:

∑
q

Aq(0) = 1. (66)

We continue with the Ji’s Sum Rule (spin sum rule). We simplify the procedure by considering the rest frame:
Pµ = (m, 0⃗) In this case we have:

⟨Ĵz⟩ = lim
∆→0

⟨P +
∆

2
|
∫
dr⃗ εik3r

iT 0k(r)|P − ∆

2
⟩

⟨P +
∆

2
|P − ∆

2
⟩

= εik3 lim
∆→0

−i
2M

[
∂

∂∆i
⟨P +

∆

2
|T 0j(0)|P − ∆

2
⟩
]

(67)

if we consider∆ = (∆0,∆x, 0, 0). Then:

⟨Ĵz⟩ = lim
∆→0

−i
2M

∂

∂∆x
⟨P +

∆

2
|T 02(0)|P − ∆

2
⟩. (68)

Let us consider the on-shell condition:

(
P ± ∆

2

)2

=M2 =M2 + P +
∆2

4
±∆ · P (69)

Therefore we get the condition:

∆2 = ∆2
0 −∆2

x = ∓4M∆0 (70)

For which we get:

∆0 = ±2M ∓
√

4M2 +∆2
x (71)

in this way if∆x → 0 then also∆0 = 0. In addition, one can prove that:

ū′u =
−∆2

0 +∆2
x + 16M2

2
√
4M −∆0

√
4M −∆0

(72)

this term goes to 0 after the derivation and sending∆ → 0. Therefore, the only non trivial term which contributes
is given by (recall that P⃗ = 0):

ū′
{
[A(t) +B(t)]

i

4M
P 0σ2ν∆ν

}
= ū′

{
[A(t) +B(t)]

i

4M

(
Mσ20∆0 −Mσ21∆x

)}
u (73)

since both ∆0 → 0 and ∆x → 0, the only chance to have a non-zero result is that the derivative acts the term
proportional to∆x. Finally:
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⟨Ĵz⟩ = − i

2M

i

2M
[A(0) +B(0)]Mūσ12u = [A(0) +B(0)]

1

4M2
M2M = [A(0) +B(0)]

1

2
=

1

2
(74)

So that:

∑
q

Aq(0) +Bq(0) = 1 = 2J(0) =

∫
dx x[H(x, 0, 0) + E(x, 0, 0)]. (75)

Figure 7. Schematic graviton interaction with matter.

GPDs and hadron tomography

Themain details here presented can be found in Ref. 15. In order to get a probabilistic interpretation let us consider
GPDs at in the NR limit.

We start from the correlator:

fξ(x, t) =

∫
dz−
4π

eixz−P
+⟨P ′|ψ̄(0)γ+ψ(z−)|P ⟩ (76)

We consider the wave-packet:

|ψ⟩ =
∫
dp⃗

ψ(p⃗)√
2(2π)3Ep

|p⃗⟩ (77)

with Ep =
√
m2 + p2 and the normalization condition is:

⟨P ′|P ⟩ = 2Ep δ
3(P⃗ ′ − P⃗ ) (78)

moreover (we consider a scalar particle for simplicity):

⟨p⃗′|ρ(0)|p⃗⟩ = (Ep + E′
p)F (q

′) (79)

with q = p′ − p. We evaluate the following quantity:
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Fψ(q2) =
∫
dz⃗ e−iq⃗·z⃗⟨ψ|ρ(z⃗)|ψ⟩ =

∫
dz⃗ e−iq⃗·z⃗

∫
dp⃗ dp⃗′

2(2π)3
ψ(p)√
Ep

ψ∗(p′)√
Ep′

⟨p⃗′|ρ(z⃗)|p⃗⟩ (80)

=

∫
dz⃗ e−iq⃗·z⃗

∫
dp⃗ dp⃗′

2(2π)3
ψ(p)√
Ep

ψ∗(p′)√
Ep′

⟨p⃗′|eiP̂ ·z⃗ρ(0)e−iP̂ ·z⃗|p⃗⟩

=

∫
dz⃗

∫
dp⃗dp⃗′

2(2π)3
e−iq⃗·z⃗ei(p⃗

′−p⃗)·z⃗ ψ(p)√
Ep

ψ∗(p′)√
Ep′

⟨p⃗′|ρ(0)|p⃗⟩ = 1

2

∫
dp⃗

ψ(p)√
Ep

ψ∗(p+ q)√
Ep+q

⟨p⃗+ q⃗|ρ(0)|p⃗⟩

=
1

2

∫
dp⃗

ψ(p)√
Ep

ψ∗(p+ q)√
Ep+q

(Ep + Ep+q)F (q
2)

We remind that q2 = (Ep − Ep+q)
2 − q⃗2, moreover in the NR limit we have:

Ep + Ep+q

2
√
EpEp+q

=

√
m2 + p⃗2 +

√
m2 + (p⃗+ q⃗)2

2(m2 + p⃗2)1/4(m2 + (p⃗+ q⃗)2)1/4
=

m

(√
1 +

p⃗2

m2

)
+

(√
1 +

(p⃗+ q⃗)2

m2

)

2m

[(
1 +

p⃗2

m2

)(
1 +

p⃗2

m2

)]1/4 (81)

∼
2 +

p⃗2

2m2
+

p⃗2

2m2

2

[
1 +

p⃗2

4m2
+

p⃗2

4m2

] = 1

finally:

Fψ(q2) = F (q2)

∫
dp⃗ ψ∗(p⃗+ q⃗)ψ(p⃗) ∼ F (q2) (82)

if the package is localized in coordinate space (so broad in momentum space). So in the NR as long as you have this
wave packets, the FT of your mean density is the form factor. If ones include relativistic corrections, then we have
extra terms depending on these factors:

i) q⃗ · p⃗/E2
p

ii) q2/E2
p .

Therefore we needs some extra-conditions:

• if q⃗ is finite then we need Ep → ∞
• if p⃗ → ∞ then for the first term, in order to remove that term we need to request that, assuming again q⃗ =
(0, 0, qz) then p⃗(px, py, 0).

in other words the IMF. So the proton is moving very fast in the transverse plane w.r.t. q⃗. Therefore, qualitatively,
in the GPDs case we need to require that∆+ = 0 = ξ. Why IMF is so nice?. Let us consider the NR energy:

E =
∑
i

p⃗2i
2mi

+Binding (83)
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In the relativistic case we have in the free case:

E =
∑
i

√
m2
i + p⃗2i =

∑
i

mi

√
1 +

p⃗2i
m2

−→
∑
i

mi︸ ︷︷ ︸
shift

+
∑
i

p⃗2i
2mi

(84)

Let us separate the longitudinal and transverse parts and we make a longitudinal boost where the z component of
the momentum is almost infinity:

E =
∑
i

√
m2
i + p⃗2⊥,i + p2z,i =

∑
i

√
p2z,i +m2

i + p⃗2⊥,i︸ ︷︷ ︸
as in rest

=
∑
i

pz,i

√√√√1 +
m2
i + p⃗2⊥,i
p2z,i

(85)

∼
∑
i

pz,i︸ ︷︷ ︸
(1)

+
∑
i

p⃗2⊥,i +m2
i

2pz,i︸ ︷︷ ︸
(2)

So now:

i) can be arbitrary big and it is like inertia (eq. of motion will not change)
ii) The evolution operator will be the conjugate to

p⃗2⊥,i +m2
i

2pz,i
(86)

therefore if pz is big we have slow changes.

Therefore in IMF we have a relativistic Physics which is NR in the transverse part. Very useful.

Cross-section

For this section and convention please consider the following reference 16. For the cross-section, the DVCS is one
of the possible diagrams that contribute to the final state (electron+photon+proton). The dominant term is the
Bethe-Hidler process:

From the previous discussion it is clear that GPDs are very useful to understand the parton structure of the nucleon.
Nevertheless the experimental situation is quite unsatisfactory, due to several problems:

. the cross-section for this event is very small, of the order
(
10−2 nb

Gev4

)
, this happens because the scattered

electron and the real photon must measured at the same time and also the target should not be broken, despite
the fact thatQ2 is very high.

. DVCS events can be confused with Bethe-Heitler events because they have the some initial and final state (see
Figure:8), with the last process dominant for highQ2. The observed cross-section can be sketched as follows:

dσ ∼ |T 2| ∼
∣∣TBH + TDV CS

∣∣2 = ∣∣TBH ∣∣2 + ∣∣TDV CS∣∣2 + I

∼
∣∣TBH ∣∣2 + I. (87)
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Figure 8. The processes contributing to the reactionA(e, e′γ)A: DVCS (a) and BH (b)

Usually asymmetries of the cross-sections aremeasured in order to eliminate
∣∣TBH ∣∣2 and to extract the relevant

information, hidden in
∣∣TDV CS∣∣. I is the interference term which should extracted. Let us remind that the

BH term contains only FFs (pure QED) and the DVCS part includeds CFFs.
. An experimental problem on extractingGPDs from

∣∣TDV CS∣∣ arises from the fact that this scattering amplitude
is not proportional to the GPDs directly, as in the forward limit where the cross section itself is proportional
to the parton distribution, but in this case, one has:

TDV CS ∝
∫ 1

−1
dx
H(x, ξ,∆2)

x− ξ + iϵ
+ .. (88)

i.e., the amplitude is given by a convolution, over the variable x, of the GPDs with a propagator. These integrals
are called Compton Form Factors (CFF).

One should notice that the total amplitude depends on the charge (hidden in the interference term). As reference
for the momenta look at Fig. 8.

The cross-section:

d5σ

dxB dy dt dϕ dφ
=

α3xBy

16π2Q2
√
1 + ε2

∣∣∣∣ Te3
∣∣∣∣2 (89)

where:

xB =
Q2

2p1 · q1
(90)

Q2 = −q21
q1 = k1 − k

∆ = p2 − p1

y =
p1 · q1
p1 · k

ε = 2xB
M

Q

For the angular definition see Fig. 9.

The CFF can be spitted in its real and imaginary part. For a given GPD F (x, ξ, t):
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Figure 9. The kinematics of the leptoproduction in the target rest frame. The z-direction is chosen
counter-along the three-momentum of the incoming virtual photon. The lepton threemomenta form
the lepton scatteringplane, while the recoiledproton andoutgoing real photondefine thehadron scat-
tering plane. In this reference system the azimuthal angle of the scattered lepton is ϕl = 0, while the
azimuthal angle between the lepton plane and the recoiled proton momentum is ϕN = ϕ. When the
hadron is transversely polarized (in this reference frame) S⊥ = (0, cosΦ, sinΦ, 0), the angle between
the polarization vector and the scattered hadron is denoted as φ = Φ−ϕN .

ReF(ξ, t) = P

∫ 1

0
dx F+(x, ξ, t)C+(x, ξ) (91)

ImF(ξ, t) = −πF+(ξ, ξ, t) (92)

with:

F+(x, ξ, t) = F (x, ξ, t)− F (−x, ξ, t) (93)

C+ =
1

x+ ξ
+

1

x− ξ
.

Let us mention the dispersion relation:

ReF(ξ, t) = P

∫ 1

0
F+(x, x, t)C+(x, ξ)− δ(t) (94)

One should notice that the integrand is directly proportional to the imaginary part of CFF and δ(t) is related to the
D-term in EMT which encodes information on the mechaanical proprties of hadrons.

Let us now discuss how amplitudes depend on CFFs and FFs:

|TBH |2 =
e6

x2By
2(1 + ε2)2∆2j(ϕ)

{
cBH0 +

2∑
n=1

cBHn cos (nϕ) + sBH1 sin (ϕ)
}

(95)

I± =
±e6

xBy3∆2j(ϕ)

{
cI0 +

3∑
n=1

cIn cos (nϕ) + sIn sin (nϕ)
}
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where ± in the interference term is related to the charge of the beam and the function j(ϕ) defined in Ref.
<empty citation> is not needed here since it simplifies where studying asymmetries. The coefficients cBHi and
sBHi include the FF while cIi and sIi depend on both CFFs and FFs. Let us start with the :

BCA =
dσ+ − dσ−

dσ+ + dσ−
(96)

where:

dσ+ − dσ− =
2α3xBy

16π2Q2
√
1 + ε2

I

e6
(97)

dσ+ + dσ− ∼ 2α3xBy

16π2
√
1 + ε2

|TBH |2

e6
(98)

hence

BCA =
xB(1 + ε2)2

y

cI1 cos(ϕ)
cBH0 + cBH1 cos (ϕ)

(99)

where in uthe unpolarized case and for quarks:

• sIn are proportional to spin, therefore in unpolarized case it does not contribute
• cI3 is related to gluons
• cI0 and cI2 and the others are proportional to∆2/Q2, which is small

and:

cI1 ∝ Re

{
F1H+

xB
2− xB

(F1 + F2)H̃ − ∆2

4M2
F2E

}
. (100)

Finally the Beam Spin Asymmetry (BSA):

BSA ∼ xB
y

sI1
cBH0

sin (ϕ). (101)

Two final remarks are in order in closing this section. The first one is that all the described formalism can be applied
also to the production of a vector meson, with the same quantum numbers of the real photon. Also these kind of
experiments, important to obtain the flavor structure of GPDs, are being planned. The second remark concerns the
pQCD evolution of these quantities. This is known at next-to-leading order and even codes are available to explain
to perform the evolution. This topic, not relevant in this work, will not be farther discussed.

Nuclear GPDs in Impulse Approximation

Contents

Kinematics for GPDs in IA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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The light-cone correlators F++ and F+−, in IA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Why 3He . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Nuclear effects on GPDs studied with a 3He target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3He as an effective neutron target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

For 3He, the proposed approach is described in Refs. 17, 18, while for 4He see Ref. 19. One of the main differences
between DVCS of protons and nuclei is that in the nuclear case we have two mechanisms:

• Coherent In this case the probe interacts with the full nucleus and one accesses nuclear GPDs and tomography,
see Fig. 10.

Figure 10. Coherent nuclear DVCS

• Incoherent In this case, the probe interact with a nucleon that will be detected, see Fig. 11.

Figure 11. Incoherent nuclear DVCS

In this lecture I will focus in the coherent case.
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In this section, witin an Impulse Approximation (IA) approach the nuclear GPDs will be obtained in terms of those
of the constituent nucleons. When IA is used, the following conditions are assumed to be valid:

• the nuclear target with A nucleons is described by two systems, one of A− 1 nucleons, which could be either
in the ground or in an excited state, and an off-shell nucleon leaving the target;

• the virtual photon interacts with the off-shell nucleon and the produced hadronic state does not further interact
in the final state with the A − 1 system, which is called, for this reason, spectator. The interacting nucleon is
treated therefore as a free particle, so that its spatial wave function is a plane wave;

• the interacting nucleon is off shell only kinematically. This means that its internal structure does not change in
the nuclear medium.

In this scenario, typical for example of the parton model, the scattering off a compound system is given by the
summation of incoherent scattering off the constituents. Despite of its simplicity, IA has been proven to describe
the bulk of nuclear effects in high-energy electron scattering off nuclei. The treatment of nuclearGPDs in IA requires
a preliminary kinematical study.

Kinematics for GPDs in IA

Figure 12. DVCS process off nuclear target in Impulse Approximation.

In order to describe a hard exclusive process, such as DVCS, new kinematical variables have to be introduced. For
this purpose, it is useful to look at Fig.4.1. The “plus” parton momentum can be related to the nucleon and nucleus
“plus” momenta as follows

k+ = (x+ ξ)P
+
= (x′ + ξ′)p+ ,

k′+ = (k +∆)+ = (x− ξ)P
+
= (x′ − ξ′)p+ , (102)

where P̄ = (P +P ′)/2, p̄ = (p+p′)/2, P, P ′(p, p′) are nuclear (nucleon)momenta and k, k′ the parton ones. One
can notice two different skewednesses, and two “plus” momentum fraction, x and x′. Using explicitly light-cone 4-
vectors, one can define the skewedness and the plus momentum fraction carried by the parton. In the nuclear case,
the fraction of “plus” momentum carried by the parton can be written with respect to the nucleus or the nucleon
momenta. The skewednesses are:
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ξ = − ∆+

2P
+ ,

ξ′ = −∆+

2p+
. (103)

The above equation reflects an obvious, peculiar feature of IA: the momentum transfer is the same for the nucleus
and the internal nucleon. Now relations between the variables associated to the nucleus and to the nucleon can be
found:

x′ =
ξ′

ξ
x , z̃ =

p+

P+
,

ξ′ =
ξ

z̃(1 + ξ)− ξ
, (104)

so that the GPDs of the nucleus will depend on the variable x, ξ, ∆2, while the one of the bound nucleon on
x′, ξ′, ∆2. As previously stated, the nucleons are off-shell. By analyzing energy conservation at the electromagnetic
nuclear vertex, one has:

p0 =MA − p0A−1 =MA −
√
Mf,2
A−1 +

−→
P 2
A−1 ≈MN − E −KR , (105)

whereN is referred to the nucleon andA to the nucleus, whileE = |EA| − |EA−1|+E∗
A−1. In the last expression

the first and the second terms are binding energies, while the last is the excitation energy of the recoiling A − 1
system with kinetic energyKR. All this information is contained in the argument of the structure functions of the
bound nucleon, whose functional form is taken to be same of the free nucleon, being therefore the off-shellness a
kinematical one. One should notice that, from the above equation, one has p2 ̸= M2. Another important topic
which has to be discussed when nuclear targets are involved, due to the lack of a relativistic description of them, is
the non relativistic limit of the Eq. (36). This point is fundamental to find direct relations between the correlator
FAH,H′ and the GPDs in the non-relativistic case (NR).

The light-cone correlators F++ and F+−, in IA

In order to find formulae for the GPDs of 3He, it is convenient to start from the definition Eq. (35) for the nuclear
target with A = 3:

FA,qS,S′(x, ξ,∆
2) =

∫
dz−

2(2π)3
eixP

+z−⟨PS|Ô+
q |P ′S′⟩ (106)

where Ô+
q is the one-body operator for the quark of flavor q:

Ô+
q = Ψq(0,−

z−

2
, 0)γ+Ψq(0,

z−

2
, 0) (107)

The state |PS⟩ is normalized as follows:

⟨P ′S′|PS⟩ = (2π)3P+δ(P ′+ − P+)δ2(
−→
P ⊥ −

−→
P ′

⊥)δS′S . (108)
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Following a standard procedure, two complete sets of states, corresponding to the nucleon interacting with the
virtual photon in an IA scenario, and to a recoiling interacting system, are properly inserted to the left and right-
hand sides of the quark operator. With this procedure one will obtain convolution-like formulae between the light-
cone correlator FS,S′ of the nucleus and the corresponding quantity, fS,S′ , of the bound nucleon, i.e., relations of
the following type:

FA,qS′S =
∑
s,s′,N

Fss′
S′Sf

N,q
ss′ (109)

where N refers to the nucleon and + (−) corresponds to positive (negative) eigenvalue of the third-component of
the spin of the system. Now, IA describes the interaction of a virtual photon with a parton of one nucleon. Therefore,
an interacting two-body recoiling system, either bound or in a scattering state, together with a free nucleon, has to
be originated from the nucleus. Introducing complete sets of states for these systems and an auxiliary variable ζ ,
one gets:

FA,qS,S′(x, ξ,∆
2) =

∑
α

∑
β

∫
dζδ

(
ζ − p+

P+

)∫
dz−

2(2π)3
e
i(x

ζ
p+z−)

× ⟨P |{|
−→
P ′
RS

′
R⟩|

−→
t ′s′t′⟩|

−→p ′s′⟩}{⟨
−→
P ′
RS

′
R|⟨

−→
t ′s′t′ |⟨

−→p ′s′|}

× Ô+
q {|

−→
P RSR⟩|

−→
t st⟩|−→p s⟩}{⟨

−→
P RSR|⟨

−→
t st|⟨−→p s|}|P ′⟩ , (110)

where P⃗R and SR are themomentum and the spin of the recoiling two-bodyR system in the nuclear center of mass,
t⃗ and st are the relative momentum and the spin of the same object, p⃗ and s refer to the nucleon. The summations
(and integral) run over the sets of indexes (and continuous variables):

α =
−→
P ′
R, S

′
R,

−→p ′, s′,
−→
t ′, s′t′ ;

β =
−→
P R, SR,

−→p , s,−→t , st . (111)

Since later the nuclear matrix elements have to be evaluated by means of NR wave functions, the inserted states,
which are now spin states, not helicity ones as in Eq. (106), are normalized in a NR manner:

⟨P⃗ ′S′|P⃗S⟩ = (2π)3δ3(
−→
P ′ −

−→
P )δS′S . (112)

Using this normalization, together with Eq. (108), one gets the general relation:

|P ⟩ =
√
2P0|

−→
P ⟩ . (113)

Due to the normalization (112), using intrinsic coordinates and assuming in IA that the recoiling system does not
interact further with the interacting nucleon, one obtains the following condition:

⟨P⃗RSR|⟨⃗tst|⟨−→p s|
−→
P S⟩ = ⟨−→p s,−→t st|

−→
P S⟩(2π)3δ3(

−→
P −

−→
P R −−→p )δS,SR,s,st . (114)
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where the global motion has been separated from the intrinsic one. The latter is described by the first term in r.h.s.
of the above equation, describing an intrinsic overlap. Besides, since Ô+

q is a one-body operator, one also gets:

{⟨
−→
P ′
RS

′
R|⟨

−→
t ′s′t|⟨−→p ′s′|}Ôαq {|

−→
P RSR⟩|

−→
t st⟩|−→p s⟩} = ⟨

−→
P ′
RS

′
R|
−→
P RSR⟩⟨

−→
t ′s′t′ |

−→
t st⟩⟨−→p ′s′|Ôq|−→p s⟩

= (2π)6δ3(
−→
P ′
R −

−→
P R)δ

3(
−→
t −−→

t ′)δSR,S
′
R
δst,s′t⟨

−→p ′s′|Ôq|−→p s⟩ (115)

which, using Eqs.(113),(115), can be written:

FA,qS,S′(x, ξ,∆
2) =

∑
N

∫
d−→p
(2π)3

∫ 1

x
dζδ

(
ζ − p+

P+

)∫
d
−→
t

(2π)3

√
P0P ′

0

p0p′0
fN,qs,s′

(
x

ζ
,
ξ

ζ
,∆2

)
×
∑
s,s′,st

⟨
−→
P S|−→p s,−→t st⟩⟨−→p ′s′,

−→
t st|

−→
P ′S′⟩ (116)

where it has been used the fact that, in IA, also the momentum transferred to the nucleon is ∆ = p′ − p, and
fN,qs,s′

(
x
ζ ,

ξ
ζ ,∆

2
)
is the light-cone correlator for the nucleon:

fN,qs,s′

(
x

ζ
,
ξ

ζ
,∆2

)
=

∫
dz−

2(2π)3
e
i(x

ζ
p+z−)⟨ps|Ô+

q |p′s′⟩ . (117)

In the above equation,N = p, n, specifies the nucleon type. It is useful to define the intrinsic relative energy of the
two-body system as E = t2/M , so that one gets:

∫
d
−→
t =

∫
dEdΩt

M
√
ME

2
. (118)

Using Eq. (118), one finds finally:

FA,qS,S′
(
x, ξ,∆2

)
=
∑
N

∑
ss′

∫
dE

∫
dp⃗ PNSS′ss′(p⃗, p⃗+ ∆⃗, E)

√
P0P ′

0

p0p′0
fN,qs,s′

(
x′, ξ′,∆2

)
, (119)

wherex′ = x/ζ, ξ′ = ξ/ζ andPNSS′ss′(p⃗, p⃗+∆⃗, E) is the one-body non-diagonal spin-dependent spectral function
for the nucleonN in the nucleus, which can be written:

PNSS′ss′(p⃗, E, p⃗+ ∆⃗) =
1

(2π)6

∫
dΩt

M
√
ME

2

∑
SR,st

⟨P⃗ ′S′|p⃗+ ∆⃗s′, t⃗st⟩⟨p⃗s, t⃗st|P⃗S⟩ (120)

Now, considering proper values of SS′, ss′:
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FA,q++ =
∑
st

1

(2π)6

∫
dE

M
√
ME

2

∫
d−→p dΩt

√
P0P

′
0

p0p′0
fN,q++ (x′, ξ′,∆2)

×
[
⟨P⃗ ′ + |⃗tst, p⃗′+⟩⟨p⃗+, t⃗st|P⃗+⟩ + ⟨P⃗ ′ + |⃗tst, p⃗′−⟩⟨p⃗−, t⃗st|P⃗+⟩

]
(121)

where here+ (−) is the eigenvalue of the z component of the spin.
Expressions like ⟨p⃗s, t⃗st|P⃗S⟩ are the intrinsic overlap of the wave function of the nucleus with those of the recoiling
system and of the nucleon, which have to be specified within a dynamical description of the two- and three-body
system. Using symmetry properties the above Eq. (121) can be rewritten:

FA,q++ (x, ξ,∆2) =
∑
st,σ

∑
S

1

(2π)6

∫
dE

M
√
ME

2

∫
d−→p dΩt

√
P0P

′
0

p0p′0
fN,q++ (x′, ξ′,∆2)

×
[
⟨P⃗ ′S |⃗tst, p⃗′σ⟩⟨p⃗σ, t⃗st|P⃗S⟩

]
. (122)

In order to find EAq , it is necessary to define FA+−:

FA,q+− (x, ξ,∆2) =
∑
st

1

(2π)6

∫
dE

M
√
ME

2

∫
dp⃗dΩt

√
P0P

′
0

p0p′0
fN,q+− (x′, ξ′,∆2)

×
[
⟨P⃗ ′ + |⃗tst, p⃗′+⟩⟨p⃗−, t⃗st|P⃗−⟩

− ⟨P⃗ ′ + |⃗tst, p⃗′−⟩⟨p⃗+, t⃗st|P⃗−⟩
]
. (123)

As one can see the spin structure of the coefficients are more complicated than in the case of the GPDHA
q , because

that calculation was diagonal in the spins, so that many of the simplifications found in the diagonal case will not
work in this second case. The explicit formulae which relate the light-cone correlator matrices to the GPDs will be
obtained in the next section. If one use:

|P ⟩ =
√
2P+|P⃗ ⟩ (124)

then in all the above formulas:

√
P0P

′
0

p0p′0
→

√
P+P

′+

p+p′+
=

√√√√(P+ − ∆+

2 )(P+ + ∆+

2 )

(p+ − ∆+

2 )(p+ + ∆+

2 )
∼ P+

p+
=
ξ′

ξ
(125)

Therefore we finally get:

HA,q(x, ξ,∆2) =
∑
N

∑
S

∑
s

∫
dE

∫
dp⃗

ξ′

ξ
HN,q(x′, ξ′,∆2)PNSSss(p⃗, p⃗+ ∆⃗, E).

Moreover:
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Table 1. Light nuclei features: atomic number Z , mass number A, Spin – Parity J π , binding
energyE, dipole magnetic moment µ, quadrupole electric momentQ.

Nucleus Z A J π E (MeV ) µ (µN ) Q (barns)
2H 1 2 1+ - 2.225 0.857 0.0028
3H 1 3 1

2

+ - 8.482 2.979 −
3He 2 3 1

2

+ - 7.718 - 2.128 −

HA,q(x, ξ, t) + EA,q(x, ξ, t) =
∑
N

∑
S

∑
s

∫
dE

∫
dp⃗

ξ′

ξ

[
HN,q(x′, ξ′, t) + EN,q(x′, ξ′, t)

]
(126)

×
[
PN+−+−(p⃗, p⃗+ ∆⃗, E)− PN+−−+(p⃗, p⃗+ ∆⃗, E)

]
.

Why 3He

The study of GPDs for 3He is interesting for many aspects. In fact, 3He is a well known nucleus so conventional
nuclear effects can be calculated, and it is extensively used as an effective neutron target. As a matter of facts, free
neutron target do not exist and the properties of the free neutron are being investigated through experiments with
nuclei , whose data are analyzed taking nuclear effects properly into account. For example, it has been shown that
unpolarized DIS off trinucleons (3H and 3He) can provide relevant information on (parton distributions) PDFs at
large xBj , while it is known since a long time that its particular spin structure suggests the use of 3He as an effective
polarized neutron target, see Refs. 20, 21. Polarized 3He is therefore the first candidate for experiments aimed at the
study of angular momentum properties of the free neutron, such as the GPD ENq . Moreover it is well known that
90 % of the nucleus spin comes from the neutron one, as a is consequence of its internal dynamics.
Summarizing, 3He is a unique target for GPDs studies, for two main reasons,i.g., the investigation of nuclear effects
on GPDs and the access to the neutron information. Here are discussed these two issues in this order.

Nuclear effects on GPDs studied with a 3He target

TheH3
q GPD has been obtained in terms of theHN

q of the nucleon, using a realistic non-diagonal spectral function,
so that momentum and binding effects have been rigorously estimated. The scheme proposed was valid for∆2 ≪
Q2,M2 and it permitted to calculate GPDs in the kinematical range relevant to the coherent, no break-up channel
of deep exclusive processes off 3He. In fact, the latter channel can be hardly studied at large∆2, due to the vanishing
cross section, see Ref. 22. Nuclear effects were found to be larger than in the forward case and to increase with∆2

at fixed skewedness, and with the skewedness at fixed ∆2. In particular the latter ∆2 dependence did not simply
factorize.

A detailed study of the flavor dependence of the nuclear effects, due to the fact that 3He is non isoscalar was also
presented. One should notice that the other few-body targets, such as 2H and 4He, are isoscalar and the flavor
dependence of GPDs can be hardly accessed. In this sense 3He is unique.

3He as an effective neutron target

Another reason to choose 3He as a target for future experiments is that it can be considered a source of polarized
neutrons. As a matter of facts corrections coming from the proton polarization are smaller than for deuteron target.
This property can be understood thinking simply to the independent particle (shell) model where nuclear spin and
parity are the same of the unpaired nucleon. For 3He , it would be therefore Jπ = 1

2

+, the same of the neutron.
In this model, the Orbital Angular Momentum (OAM) of each particle is 0, so that proton-proton pair total spin
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must be zero, due to the Pauli principle, so the nucleus spin comes only from that of the neutron. Now experiments
show that this model is valid up to a 10% error. Nowadays, a rigorous theoretical description of three-body nuclear
systems is available. The solution of the corresponding Schrödinger equation can be obtained exactly even using
realistic potentials †, using the Faddeev technique. Variational calculations, although approximated, provide the
results of a similar quality. For the aim of this work it is enough to say that all the realistic calculations show that the
3He wave-function can be written as follows:

ψ 1
2
,M ≈ aSΦS(

2S 1
2
) + aS′ΦS′(2S ′

1
2
) + aDΦD(

4D 1
2
) , (127)

where the usual spectroscopic notation: 2S+1LJ is used and | aL |2= P (L) the probability of having the com-
ponents with OAM L. It is useful to examine all these terms. The first is the dominant part and coincides with
the model previously exposed. It is totally symmetric for the spatial term, so that it is totally antisymmetric for
the spin-isospin part. This is the contribution which would be present if the interaction were central and Isospin-
independent. Anyway the Deuteron properties show that strong interactions depend on the spin and the isospin,
and, these effects are contained in the other terms of the wave-function. ΦS′ hasL = 0, too, but it is of mixed spatial
symmetry. ΦD depends on the non-central nature of the interaction. This term is related to the tensor force active
between symmetric spin states with different orbital angular momenta. These two terms of the wave-function are
found to give small contributions, so the total nuclear spin and dipole magnetic momentum are essentially given by
neutron. The probabilities for the L waves obtained in realistic calculations lie in the range:

P (S) ∼ 85− 95% P (S ′) ∼ 0.5− 2% P (D) ∼ 4− 10% . (128)

Figure 13. Polarization of protons and neutron in the main components of the wave function of 3He

As already stressed, GPDs are not densities, and they cannot be related to static wave function properties. In any
case, in the forward limit, such as an identification is possible. Since one of the main interests in GPDs study is the
forward limit of the GPD E3

q , whose integral is the magnetic form factor, yielding the dipole magnetic moment at
t = 0, at least in this limit, this static 3He feature could be used. One should remember that the relation between the
GPDs andOAM (??,??), holds in the forward limit. This should allow a direct connection between themeasurement
of E3

q for 3He and the OAM content of the neutron. This is one of the reasons why the present analysis started.

A crucial observation is the following: the others “light” nuclear targets, such as 2H and 4He, are useless for this
purpose. Indeed, the anomalous magnetic moment of 2H is extremely small (and such is the contribution of the
GPD E to DVCS close to the forward limit), while 4He, being an isoscalar-scalar nucleus, does not have a E GPD
in the current describing the DVCS process. The numerical results of the calculations and relative discussion can
be found in Ref. 18.

†Technically, a realistic 2-body potential is the one which is able to reproduce the properties of the 2-body nuclear systems, in the bound
(deuteron) and elastic scattering state. A few potentials are available nowadays with a χ2

datum
≈ 1
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Examples

Here I collect the examples that I discussed in the final lecture.

Contents

QCD Light-Front . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Fock expansion applied to Nuclear Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

QCD Light-Front

We use LF quantization to get a relativistic quantum mechanim description of strong interacting systems. The
evolution will not be in term of ordinary time coordinate but with LF time x+ = x0+x3. As already pointed out in
other lectures, within the LF dynamics you can get mass equations similar to the Schrödinger. An important result
is that the vacum is trivial so that a Fock expansion of composite systems is allowed in terms of constituents, see
Ref. 13, 23. For any hadronic system, the LF quantization in term of τ = t+ z/c, leads to the relativistic equation:

HQCD
LF = P 2 = P−P+ − P2

⊥, (129)

where

P− =
P2
⊥ +M2

P+
, P+ > 0. (130)

Now there is no square root of any operator leading to sign problems and the dependence of the P ⊥ operator is
similar to the non relativist case, as in the IMF. Clearly, P− is the conjugate variable to x+ so that it will represent
the time evolution operator:

i
∂

∂x+
|ψ(P )⟩ = P−|ψ(P )⟩, (131)

One should recall that the generators P+ and P⊥ are kinematical and do not depend on the interaction. Clearly,
from the usual relativistic interpretation one gets PµPµ = M2, i.e. the total invariant mass which is related to the
spctrum of the hadron. Therefore one gets the following equation:

HLF |ψh⟩ =M2
h |ψh⟩ (132)

where |ψh⟩ is the hadron state that can be now expanded (in the gauge A+ = 0) as a coherent sum of Fock states
solution of the free hamiltonian:

|ψh⟩ =
∑
n

ψnh|ψh⟩. (133)

The LF wave-sfunction ψn/hn do not depend on the relative frame and they own the usual probabilistic interpreta-
tion. Moreover, the Fock states |n⟩ are obtained as useful, by applying the creation and annihilation operators on
the vacum |0⟩:
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n = 0 : |0⟩,
n = 1 : |qq̄; k+i , k⊥i, λi⟩ = b†(q1)d

†(q2)|0⟩,
n = 2 : |qq̄g; k+i , k⊥i, λi⟩ = b†(q1)d

†(q2)a
†(q3)|0⟩,

...

(134)

where the operators b†(q), d†(q) and a†(q) create quark, anti quatks and gluons, respectively, with momentum k+i
and k⊥i and, for quarks, LF helicity λi. These states are eigenstates of the operators P+ e P⊥. Since these quantities
are kinematical, the following relations hold for composite systems:

P⊥ =
∑
i∈n

k⊥i, P+ =
∑
i∈n

k+i , k+i > 0. (135)

The vacuum is given by: P⊥|0⟩ = 0 e P+|0⟩ = 0. One can define the LF boost invariant longitudinal momentum
fraction carried by a parton i:

xi =
k+i
P+

, 0 < xi < 1, (136)

Therefore, the full four momentum vector of a given parton is:

kµi = (k+i , k
−
i , k⃗⊥,i) =

(
xiP

+,
m2
i + k2⊥,i
xiP+

, k⃗⊥,i

)
, i = 1, . . . , Nn. (137)

and the on-shell condition is fulfilled: (kµi )2 = m2
i . Now if we consider non interacting partons then we would get

the following condition:

(
Nn∑
i=1

k−i

)
P+ − P 2

⊥ =

Nn∑
i=1

(
k2⊥i +m2

i

xi

)
− P 2

⊥ =M2
0 . (138)

whereM2
0 is the free mass, i.e. the mass of the hadron if made of free partons. In terms of LF variable we have:

Nn∑
i=1

xi = 1,

Nn∑
i=1

k⊥i = 0. (139)

Within these ingredients, the hadron state, expanded in terms of a basis of Fock states reads:

|ψh(P+,P⊥, Sz)⟩ =
∑
n

n∏
i=1

∫
dxid

2k⊥i
2xi(16π3)

δ

1−
n∑
j=1

xj

 δ(2)

 n∑
j=1

k⊥j

 (140)

× ψn/h(xi, k⊥i, λi)|n;P+, xiP⊥ + k⊥i, λi⟩.

with the normalization which is fixed by the following condition:

⟨ψh(P+,P⊥, Sz)|ψh(P ′+,P′
⊥, S

′
z)⟩ = 2P+(2π)3δSzS′

z
δ(P+ − P ′+)δ(2)(P⊥ − P′

⊥). (141)

Let us define:
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[
dxid

2k⊥i
]
= δ

1−
Nn∑
j=1

xj

 δ(2)

Nn∑
j=1

k⊥j

 dx1...dxNnd
2k⊥1...d

2k⊥Nn . (142)

then:

∑
n

∫ [
dxid

2k⊥i
]
|ψn/h(xi, k⊥i)|2 = 1. (143)

For practical purposes let us mention that when you need to study parton distributions or quantities depending on
quark field operators, in particular one can define the good and bad components:

ψ± = Λ±ψ (144)

Λ± = γ0γ±. (145)

So the phsysical fields will be:

ψ+(x
−, x⊥)a =

∑
λ

∫
q+>0

dq+ d2q⊥√
2q+(2π)3

[a(q, λ)ua(q, λ)e
−iq·x + d†(q, λ)va(q, λ)e

iq·x], (146)

and
A⊥(x

−, x⊥) =
∑
λ

∫
q+>0

dq+ d2q⊥√
2q+(2π)3

[a(q, λ)ϵ⊥(q, λ)e
−iq·x + a†(q, λ)ϵ∗⊥(q, λ)e

iq·x], (147)

where the spinors:

u↑(p) =
1√
p+

(p+ + βm+ ᾱ⊥ · p⊥)χ↑, (148)

v↑(p) =
1√
p+

(p+ − βm+ ᾱ⊥ · p⊥)χ↑. (149)

with this convention for the matrices:

α =

(
0 σ
σ 0

)
, β =

(
I 0
0 −I

)
, γ5 =

(
0 I
I 0

)
. (150)

Spinors are

χ↑ =
1√
2


1
0
1
0

 , χ↓ =
1√
2


0
1
0
−1

 (151)

and

χ↑ =
1√
2


1
0
1
0

 , χ↓ =
1√
2


0
1
0
−1

 . (152)
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The commutation rules are:

[a(q), a†(q′)] = {b(q), b†(q′)} = {d(q), d†(q′)} = (2π)3δ(q+ − q′+)δ(2)(q⊥ − q′⊥). (153)

and the single state particle is:

|q⟩ =
√
2q+b†(q)|0⟩ (154)

with the orthogonality condition:

⟨q|q′⟩ = 2q+(2π)3δ(q+ − q′+)δ(2)(q⊥ − q′⊥). (155)

Therefore, each Fock state in the expansion satisfies:

⟨p+i , p⊥i, λi|p
′+
i , p

′
⊥i, λ

′
i⟩ = 2p+i (2π)

3δ(p+i − p′+i )δ(2)(P⊥i − P ′
⊥i)δλ,λ′ . (156)

Fock expansion applied to Nuclear Physics

In this final part we apply the Fock expansion to the nuclear case. In fact, now it is natural to apply it since we have
a system with a fixed number of constituent (as a first approximation). The convertion would be the following:

• the free partonic state are replace with nucleon states. Therefore our creation and annihilation operators create
and destroy nucleon states;

• x→ ξ the longitudinal momentum fraction carried by a nucleon w.r.t. the nucleus momentum;
• we will have the nuclear LF wave-function;

Nuclear PDFs

Let us first recall the PDFs for the nucleon case:

f τq (x) = 2p+
∫
dz−

2π
eixp

+z−⟨p; τ |θq(0, z)|τ ; p⟩
∣∣∣z⊥=0

z+=0
, (157)

where q is the flavors of the involved quarks, |τ ; p⟩ is the nucleon state with intrinsic dofs, pµ ≡ {p±, p⊥} the
nucleon four-momentum with p± = (p0± p3)/

√
2 and xℓ = q+ℓ /p

+ the longitudinal momentum fraction carried
by the ℓ-th parton w.r.t. the nucleon momentum, being qµℓ the momentum of the ℓ-parton. Clearly, one must have
x ≤ 1. The bi-linear operators appearing in the above expression read:

θi(y, z) = q̄i

(
y − 1

2
z

)
1

2
γ+qi

(
y +

1

2
z

)
, (158)

where qi(y ± z/2) is the quark field operator for a parton of flavor i. The generalization to a nucleus A is:

fAq (x) = 2P+

∫
dz−

2π
eixP

+z−⟨A|θq(0, z)|A⟩
∣∣∣z⊥=0

z+=0
. (159)

Now P+ is the plus component of the nucleus momentum in the lab frame, whereas |A⟩ denotes the nuclear state.
We consider the above LF approach since it remarkably allows us to easily separate the centre of mass motion from
the intrinsic one (as in the non relativistic case), both at the level of the nucleus and the nucleon, given the subgroup

Page 33 | June 2025



properties of the LF-boosts. Let us define the conventions for the momenta of partons, nucleons and nuclei, respec-
tively: i) qµℓ is the four-momentum of the ℓ−th parton in the Lab frame, ii) pµr (kµr ) the four-momentum of the r−th
nucleon inside the nucleus in the Lab (intrinsic) frame with r = 1, 2 . . . , A andM the nucleon mass (notice that
p2r = M2 in LF formalism), iii) MA the nucleus mass with four-momentum Pµ ≡ {P±,P⊥} in the Lab frame
(recall Pµ ≡ {P± = MA, 0⊥} in the intrinsic frame). One can also define the longitudinal-momentum fractions
carried by the r-th nucleon w.r.t. the parent nucleus:

ξr =
p+r
P+

. (160)

With these definitions, the nucleon momentum vector can be expressed as follows in terms of the intrinsic LF
coordinates {ξr, k⊥,r}:

p+r = ξrP
+; p⊥,r = ξrP⊥ + k⊥,r , (161)

and the following constraints from the four-momentum conservation are found:

A∑
r

p+r = P+ ⇒
A∑
r

ξr = 1 , (162)∑
r

p⊥,r = P⊥ ⇒
∑
r

k⊥,r = 0 . (163)

Analogously, the longitudinal momentum fractions carried by the ℓ-th parton w.r.t. the nucleus can be introduced
(N.B. in Eq. 157 the same notation indicates the longitudinal fraction w.r.t. the nucleon):

xℓ =
q+ℓ
P+

. (164)

In the present analysis, we assume a factorized formof the nuclear state |A⟩, as the Cartesian product of i) the nuclear
that takes into account only nucleonic dofs and ii) an intrinsic part, with partonic dofs. In this framework, one gets:

|A⟩ =
∑

τ1,..,τA=n,p

∑
λ1,..,λA

1

[2(2π)3](A−1)/2

∫ [ A∏
r=1

dξrd
2k⊥,r√
ξr

]
δ

(
1−

A∑
l=1

ξl

)
δ

(
A∑
l=1

k⊥,l

)
(165)

× ψ(ξ1, .., ξA, k1,⊥, ..., k⊥,A, τ1, ..., τA, λ1, ..., λA)|n1⟩ · · · |nA⟩ ,

where, ψ is the LF nuclear wf that describes the dynamics of A nucleons (i.e. the collection of centres of masses of
QCD singlet-states) in the frame where P⊥ = 0, and λr is the projection of the spin of r-th nucleon along the z
axis. Of course, the nuclear wf is completely antisymmetric under the exchange of two nucleons.

In analogy with the Fock decomposition of the hadronic states in terms of free parton states the above independent
nucleons state, |ni⟩, should consist only of plane-waves describing the centre-of-mass motion of each nucleon, as
whole. However, in order to completely describe the nuclear state, one should also include the intrinsic partonic
part, where the introduction of a large scale, i.e. the nucleus radius, suggests to separate the effects of nucleonic and
partonic dofs, obtaining a workable approximation. In particular, we simply assume that:

|nr⟩ = |ξrP+, ξrP⊥ + k⊥,r, τr, λr⟩︸ ︷︷ ︸
CM plane−wave

⊗ |ϕr⟩︸︷︷︸
intrinsic

. (166)
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Since our calculations will parametrize the intrinsic dependence of the nucleon state entirely through parton dis-
tribution functions, as discussed in what follows, we will henceforth omit explicit reference to such a dependence.
Here, τr represents the nucleon isospin. Once the intrinsic part is properly normalized, the orthonormalization rule
of the nucleon states is:

⟨nr|n′k⟩ = 2(2π)3p+r δ(p
+
r − p′+k )δ(2)(p⊥,r − p′⊥,k)δτr,τ ′kδλr,λ′kδr,k (167)

= 2(2π)3ξrδ

(
ξr −

P ′+

P+
ξ′k

)
δ(2)(ξrP⊥ + k⊥r − ξ′kP

′
⊥ − k′⊥k)δτr,τ ′kδλr,λ′kδr,k ,

Where we denote with δr,k the orthogonality over all the intrinsic quantum numbers. The above expression can be
generalized to the nuclear case, viz.:

⟨A|A′⟩ = 2(2π)3P+δ(P+ − P ′+)δ(2)(P⊥ − P′
⊥) , (168)

therefore, after inserting Eq. 165, the orthonormalization rule of the nuclear wfs reads:

⟨A|A′⟩ =
∑

τ1,...,τA=n,p

∑
τ ′1,...,τ

′
A=n,p

∫ [ A∏
r=1

dξrd
2k⊥,r√
ξr

][
A∏
r=1

dξ′rd
2k′⊥,r√
ξ′r

] A∏
r=1

∑
λr

 A∏
r=1

∑
λ′r

 (169)

× 1

[2(2π3)]A−1
⟨n1|n′1⟩⟨n2|n′2⟩ . . . ⟨nA|n′A⟩

× ψ†(ξ1, .., ξA, k1,⊥, ..., k⊥,A, τ1, ..., τA, λ1, ..., λA)δ

(
1−

A∑
k=1

ξk

)
δ

(
A∑
l=1

k⊥,l

)

× ψ(ξ′1, .., ξ
′
A, k

′
⊥,1, ..., k

′
⊥,A, τ

′
1, ..., τ

′
A, λ

′
1, ..., λ

′
A)δ

(
1−

A∑
k=1

ξ′k

)
δ

(
A∑
l=1

k′⊥,l

)
.

⟨A|A′⟩ = 1

[2(2π3)]A−1

∑
τ1,...,τA=n,p

∫ [ A∏
r=1

dξrd
2k⊥,r√
ξr

] A∏
r=1

∑
λr

 (170)

× ψ†(ξ1, .., ξA, k1,⊥, ..., k⊥,A, τ1, ..., τA, λ1, ..., λA)δ

(
1−

A∑
k=1

ξk

)
δ

(
A∑
l=1

k⊥,l

)

×

{ ∑
τ ′1,...,τ

′
A=n,p

∫ [ A∏
r=1

dξ′rd
2k′⊥,r√
ξ′r

] A∏
r=1

∑
λ′r

 ⟨n1|n′1⟩⟨n2|n′2⟩ . . . ⟨nA|n′A⟩

× ψ(ξ′1, .., ξ
′
A, k

′
⊥,1, ..., k

′
⊥,A, τ

′
1, ..., τ

′
A, λ

′
1, ..., λ

′
A)δ

(
1−

A∑
k=1

ξ′k

)
δ

(
A∑
l=1

k′⊥,l

)}
.
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By inserting the result of Eq. 167, the quantity in the curly brackets becomes:

∫  A∏
r=1

dξ′rd
2k′⊥,r√
ξ′r

∑
λ′r,τ

′
r

[ A∏
r

⟨nr|n′r⟩

]
ψ(ξ′1, .., ξ

′
A, k

′
⊥,1, ..., k

′
⊥,A, τ

′
1, ..., τ

′
A, λ

′
1, ...λ

′
A)δ

(
1−

A∑
k=1

ξ′k

)
δ

(
A∑
l=1

k′⊥,l

)
=

(171)

= [2(2π3)]A

 A∏
r=1

∑
λ′r,τ

′
r

√
ξr

P+δ
(
P+ − P ′+) δ (P⊥ − P′

⊥
)
ψ(ξ1, .., ξA, k1,⊥, ..., k⊥,A, τ ′1, ..., τ

′
A, λ

′
1, ..., λ

′
A)

×
A∏
i=r

δ(τr − τ ′r)δ(λ
′
r − λr) ,

and therefore:

⟨A|A′⟩ = 2(2π3)P+δ
(
P+ − P ′+) δ (P⊥ − P′

⊥
)

(172)

×
∫  A∏

r=1

dξrd
2k⊥,r

∑
λr

∑
τr=n,p

 |ψ(ξ1, .., ξA, k1,⊥, ..., k⊥,A, τ1, ..., τA, λ1, ..., λA)|2δ

(
1−

A∑
k=1

ξk

)
δ

(
A∑
l=1

k⊥,l

)
.

Thus the normalization of the nuclear LF wf reads:

∑
τ1,...,τA=n,p

∫  A∏
r=1

dξrd
2k⊥,r

∑
λr

 |ψ(ξ1, .., ξA, k1,⊥, ..., k⊥,A, τ1, ..., τA, λ1, .., λA)|2δ

(
1−

A∑
k=1

ξk

)
δ

(
A∑
l=1

k⊥,l

)
= 1 .

(173)

Once the nuclear state has been properly defined in terms of its constituents and the normalization of the wave
function is established, the expression given in Eq. (165) can be used to evaluate nuclear distributions in Eq. (159).

Nuclear PDFs in impulse approximation

In order to properly allow the bilinear operators in Eq. (159) to act on the intrinsic part of the nucleonic states
which describe the nucleon internal structure, we adopt the decomposition of the nuclear operators in impulse
approximation. In this framework, each operator in Eq. (159) is given, for each quark flavor, by an incoherent sum
over operators acting on nucleon states:

θq(0, z) =⇒ Θq(0, z) =
A∑
l

θlq (0, z) , (174)

where the superscript l in θ specifies that the operator acts only on the partons pertaining to the nucleon l. From
now on, taking care of antisymmetry in the nuclear wf:

Θq(0, z) = Aθ1q(0, z). (175)

Once the above operator is considered in Eq. (159) and the nuclear expansion of Eq. (165) for the state |A⟩ is taken
into account one can contract all the nucleon states that are not ivolved in the matrix element. We live just two
nucleon to show how it works:
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fAq (x) =
2P+

[2(2π)3]

∑
τ1,τ2=n,p

∑
λ1,λ2

∑
λ′1,λ

′
2

∫
dz−

2π

dξ1dξ2dξ
′
1√

ξ1ξ2ξ′1(ξ1 + ξ2 − ξ′1)
d2k1,⊥d

2k2,⊥d
2k′⊥,1 (176)

× eixP
+z−ψ(ξ1, ξ2, k1,⊥, k2,⊥, τ1, τ2, λ1, λ2)ψ†(ξ′1, ξ

′
2, k

′
⊥,1, k′⊥,2, τ1, τ2, λ′1, λ

′
2)

× ⟨n′1|⟨n′2|Θi (y, z1)Θj (0, z2) |n1⟩|n2⟩
∣∣∣z⊥=0

z+=0
,

where ξ′2 = ξ1 + ξ2 − ξ′1, k′⊥,2 = k1,⊥ + k2,⊥ − k′⊥,1 and

ψ(ξ1, ξ2, k1,⊥, k2,⊥, τ1, τ2, λ1, λ2)ψ†(ξ′1, ξ
′
2, k

′
⊥,1, k′⊥,2, τ1, τ2, λ′1, λ

′
2) (177)

≡
∑

τ3,..,τA=n,p

∑
λ3,..,λA

∫ [A−1∏
r=3

dξrd
2k⊥,r

]
ψ(ξ1, .., ξA, k1,⊥, ..., k⊥,A, τ1, ..., τA, λ1, ..., λA)

× ψ†(ξ′1, ξ
′
2, ξ3, .., ξA, k

′
⊥,1, k

′
⊥,2, k⊥,3, ..., k⊥,A, τ1, ..., τA, λ

′
1, λ

′
2, λ3, ..., λA).

In Eq. (177), one has ξA = 1−
∑A−1

r=1 ξr and k⊥,A = −
∑A−1

r=1 k⊥,r. The normalization of the above quantity reads:

∑
τ1,τ2

∑
λ1,λ2

∫
dξ1dξ2d

2k1,⊥d
2k2,⊥|ψ(ξ1, ξ2, k1,⊥, k2,⊥, τ1, τ2, λ1, λ2)|2 = 1 . (178)

Notice that in order to compare the results here presented to those usually obtained, for example for the EMC effect,
it is necessary to evaluate PDFs as function of:

xl ≡
q+l
P+

MA

M
=

q+l
P+

1

ξ̄
(179)

with:

ξ̄ =
M

MA
∼ 1

A
. (180)

N.B. In order to avoid a heavy notation, in the following we adopt the same symbol for the longitudinal fraction of
the parton momentum w.r.t. to the nucleus introduced in Eq. 164, but with a different normalization, i.e.

∑
ℓ xℓ =

MA/M ∼ A and not equal to 1. This amounts to have an average nucleon plus-component given by ∼ P+
A /A.

One should notice that:

x1 + x2 ≤ (q+1 /P
+
A )(MA/M) + [(P+

A − q+1 )/P
+
A ](MA/M) =MA/M . (181)

Let us discuss separately the two possibilities where the operators act on partons belonging to i) the same nucleon,
i.e. the DPS1 mechanism, or ii) two different nucleons, i.e. the DPS2 mechanism.

The final formula

In this case one can exploit also the inner product ⟨n′2|n2⟩ in Eq. (176). Thus, by using xl of Eq. 179, one can
simplify Eq. (176):

fAq (x) = A 2P+
∑

τ,τ2=n,p

∫
dz−

2π

∫
dξ1
ξ1

∫
dξ2

∫
d2k1,⊥

∫
d2k2,⊥ e

ixP+z−/ξ̄ (182)

× ξ̄2|ψ(ξ1, ξ2, k1,⊥, k2,⊥, τ, τ2)| ⟨n1|θq (0, z) |n1⟩
∣∣∣z⊥==0

z+=0
.
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where the ξ̄ is needed to preserve the normalization of the distribution and you keep integrating you get:

fAq (x) = A
∑
τ=n,p

∫
dξ1

ξ̄

ξ1
ρAτ (ξ1) f

τ
q

(
x
ξ̄

ξ1

)
, (183)

where ρAτ (ξ1) is the one-body LCMD of a nucleus with A nucleons, given by

ρAτ (ξ1) ≡
∑
τ2=n,p

∫
dξ2

∫
d2k1,⊥

∫
d2k2,⊥|ψ(ξ1, ξ2, k1,⊥, k2,⊥, τ, τ2)|2 (184)

and normalized as follows ∑
τ

∫
dξ ρAτ (ξ) = 1 . (185)

To compare with other results in literature one can use:

ρ̄τ (ξ) ≡ Aρτ (ξ) . (186)

Acronym Index

BSA Beam Spin Asymmetry. 21

CFF Compton Form Factors. 19

DIS Deep Inelastic Scattering. 3

EMT Energy Momentum Tensor. 13

FFs Form Factors. 12

gFFs Gravitational Form Factors. 13

GPDs Generalized Parton Distribution Functions. 6

IA Impulse Approximation. 23

IMF Infinite Momentum Frame. 9, 17, 18

LC Light-Cone. 4

OAM Orbital Angular Momentum. 28

PDFs Parton Distribution Functions. 5

SFs Structure Functions. 5
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