Nuclear Partons at Large x: The EMC Effect

Light Ion Physics in the EIC Era

Dave Gaskell Jefferson Lab

June 26-27, 2025

The EMC Effect and Local Density

²H

0.02

0.04

Scaled Nuclear Density [fm⁻³]

0

0.00

• ¹²C

^⁴He

0.08

• ¹²C

0.08

0.06

0.10

0.10

EMC Effect and Short-Range Correlations

Weinstein *et al* first observed linear correlation between size of EMC effect and Short-Range Correlation "plateau" using EMC and older SRC data

Correlation <u>strengthened</u> with addition of JLab 6 GeV SRC (beryllium) data

This result provides a *quantitative* test of level of correlation between the two effects, but does not provide a microscopic explanation for EMC Effect

Describing the EMC Effect with SRCs

One can model the EMC effect using contributions from unmodified (mean field nucleons) and modified nucleons in SRCs

$$F_{2}^{A} = (Z - n_{SRC}^{A}) F_{2}^{p} + (N - n_{SRC}^{A}) F_{2}^{n} + n_{SRC}^{A} (F_{2}^{p*} + F_{2}^{n*})$$

= $ZF_{2}^{p} + NF_{2}^{n} + n_{SRC}^{A} (\Delta F_{2}^{p} + \Delta F_{2}^{n})$

 \rightarrow Existing EMC data can be described by universal function

Jefferson Lab

Nuclear PDFs and SRCs

Can also include SRC-based approach in global fits of nuclear PDFs

$$f_i^A(x,Q) = \frac{Z}{A} [(1 - C_p^A) \times f_i^p(x,Q) + C_p^A \times f_i^{\text{SRC}p}(x,Q)]$$
$$+ \frac{N}{A} [(1 - C_n^A) \times f_i^n(x,Q) + C_n^A \times f_i^{\text{SRC}n}(x,Q)]$$

Can break into contributions of unmodified mean-field contribution and modified SRC contribution

PDF fit works well, but this is a natural consequence of the originally observed correlation

A. W. Denniston et al, Phys.Rev.Lett. 133 (2024) 15, 152502

EMC-SRC Correlation

What causes the <u>detailed</u> nuclear dependence to be the same? \rightarrow Common cause? Does one drive the other?

Two hypotheses:

1 High virtuality

→EMC effect driven by virtuality of nucleon – relative probability to have high-momentum nucleon

2. Local Density

 \rightarrow EMC effect driven by local density – nucleons are close together

These hypotheses can be tested to looking at correlation vs. modified SRC variable

 $R_{2N} \rightarrow a_2$ corrected for CM motion of correlated pair \rightarrow number of SRCs $a_2 \rightarrow$ number of high-momentum nucleons coming from SRCs and pair motion

Neither picture ruled out by existing data

Nuclear Dependence of EMC and SRCs

Arrington et al, PRC 86, 065204 (2012)

Detailed study of nuclear dependence of EMC effect and SRCs does not favor either picture

Can we distinguish between these two pictures via some new observable? → Flavor dependence of the EMC effect

Flavor dependence and SRCs

High momentum nucleons from SRCs emerge from tensor part of *NN* interaction <u>– *np* pairs</u> dominate

 \rightarrow Probability to find 2 nucleons "close" together nearly the same for *np*, *nn*, *pp*

For r_{12} < 1.7 fm: $P_{pp} = P_{nn} \approx 0.8 P_{np}$

If EMC effect due to *high virtuality*, flavor dependence of EMC effect emerges naturally

→ If EMC effect from *local density*, *np/pp/nn* pairs all contribute (roughly) equally

SRCs, the EMC Effect and Flavor Dependence

High momentum nucleons in the nucleus come primarily from *np* pairs

 \rightarrow The relative probability to find a high momentum proton is larger than for neutron for *N*>*Z* nuclei

$$n_p^A(p) \approx \frac{1}{2x_p} a_2(A, y) n_d(p) \qquad x_p = \frac{Z}{A}$$
$$n_n^A(p) \approx \frac{1}{2x_n} a_2(A, y) n_d(p) \qquad x_n = \frac{A - Z}{A}$$

Probability to find SRC

Under the assumption the EMC effect comes from "high virtuality" (high momentum nucleons), effect driven by protons (u-quark dominates) \rightarrow similar flavor dependence is seen in some "mean-field" approaches

M. Sargsian, arXiv:1209.2477 [nucl-th] and arXiv:1210.3280 [nucl-th]

$$u_A = \frac{Z\tilde{u}_p + N\tilde{d}_p}{A} \quad d_A = \frac{Z\tilde{d}_p + N\tilde{u}_p}{A}$$

Flavor Dependence of the EMC Effect in Mean Field Approach

Mean-field calculations predict a flavor dependent EMC effect for $N \neq Z$ nuclei

Cloët, Bentz, and Thomas, PRL 102, 252301 (2009)

Isovector-vector mean field (ρ) causes u (d) quark to feel additional vector attraction (repulsion) in $N \neq Z$ nuclei

This model includes explicit quark degrees of freedom \rightarrow nuclear dynamics included via shell model

Experimentally, this flavor dependence has not been observed directly

Flavor dependence could be measured using PVDIS, pion Drell-Yan, SIDIS, unpolarized EMC Effect...

Pion Drell-Yan

Drell-Yan reaction: quark from h_A annihilating with quark from $h_b \rightarrow$ virtual photon \rightarrow lepton pair

Drell-Yan with pion beams provides access to flavor dependence of quark distributions

$$\frac{d\sigma_{\pi^{\pm}A}}{dx_{\pi}dx_{2}} = \frac{4\pi\alpha^{2}}{9sx_{\pi}x_{2}}\sum_{q}e_{q}^{2}[q_{\pi^{\pm}}(x_{\pi})\bar{q}_{A}(x_{2}) + \bar{q}_{\pi^{\pm}}(x_{\pi})q_{A}(x_{2})]$$

$$\frac{\sigma^{DY}(\pi^+ + A)}{\sigma^{DY}(\pi^- + A)} \approx \frac{d_A(x)}{4u_A(x)},$$
$$\frac{\sigma^{DY}(\pi^- + A)}{\sigma^{DY}(\pi^- + D)} \approx \frac{u_A(x)}{u_D(x)},$$
$$\frac{\sigma^{DY}(\pi^- + A)}{\sigma^{DY}(\pi^- + H)} \approx \frac{u_A(x)}{u_p(x)},$$

EMC Flavor Dependence: Pion Drell-Yan

Experiment	Flavor Ind.	Flavor dep.						
NA3	1.3	0.5						
NA10	0.60	2.5						
Omega (low Q ²)	6.2	3.2						
Omega (high Q ²)	1.4	0.96						
	χ²/DOF							

Pion-induced Drell-Yan sensitive to potential flavor dependence, but existing data lack precision

12

Pion Drell-Yan at COMPASS

Semi-Inclusive DIS

Assuming factorization holds, SIDIS acts as a "flavor tag" for struck quark \rightarrow Similar to polarized quark distribution extractions

 $D_f^h(z)$ – fragmentation function quark of flavor $f \rightarrow$ hadron h

Semi-Inclusive DIS

z=0.5

0.8

Extract flavor dependence via semi-inclusive nuc. PDF (flavor Ind.) pion yields from gold and deuterium 1.3 u_v only d_v only 1.2 Cloet et al. $\frac{Y_{Au}^{\pi^+}/Y_{Au}^{\pi^-}}{Y_D^{\pi^+}/Y_D^{\pi^-}}$ ^{Q/nV}(μ/₊μ) 0.9 Super-ratio EMC effect entirely due to d quarks Nuclear PDFs (no flavor dep.) 1 $\frac{Y_{Au}^{\pi^+} - Y_{Au}^{\pi^-}}{Y_D^{\pi^+} - Y_D^{\pi^-}}$ **Difference** ratio

(π⁺ - π)_{Au/D} EMC effect entirely due to u quarks Cloet et al 0.2 0.4 0.6 X_{bi} u_V only: EMC effect due to modification of u_A only F_2^A unchanged d_V only: EMC effect due to modification of d_A only

Jefferson Lab

Toy model:

SIDIS - Interpretability

$$R_h^A(z,\nu) = \frac{\left(\frac{1}{\sigma_e}\frac{d\sigma}{dzd\nu}\right)_A}{\left(\frac{1}{\sigma_e}\frac{d\sigma}{dzd\nu}\right)_D}$$

Hadronization is modified in the nuclear medium
→ Probability for quark *f* to form hadron *h* changes
→ Depends on *A*, hadron kinematics

Complicates interpretation of SIDIS measurements of flavor dependence if effect different for π^+ and π^-

 \rightarrow This could possibly be checked with measurements at *x*=0.3 (no EMC effect)

Jefferson Lab

Hadron attenuation effects should be smaller at EIC!

SIDIS with A=3 Nuclei

Can also explore flavor dependence with light nuclei with very different N/Z ratios:

³He: N/Z = 0.5 ³H: N/Z = 2

Expected effects due to hadron attenuation much smaller

Requires tritium target

Conditionally approved experiment in Hall B:

"Semi-Inclusive Deep Inelastic Scattering Measurement of A=3 Nuclei with CLAS12 in Hall B" Spokespersons: L. Weinstein*, O. Hen, D. Dutta, D. Gaskell, D. Meekins, D. Nguyen, J. West, Z. Ye

Parity violating electron scattering

Electron beam at JLab is highly polarized \rightarrow electron spins preferentially oriented in one direction

In DIS, the electromagnetic interaction is independent of electron spin \rightarrow parity conserving

DIS can also proceed via the weak interaction \rightarrow parity violating, but highly suppressed

The asymmetry is sensitive to the interference between EM and Weak contributions \rightarrow Coupling for weak interactions for a given quark flavor not the same as electromagnetic

Flavor Dependence from PVDIS

$$A_{PV} \approx -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left[a_1(x) + \frac{1 - (1 - y)^2}{1 + (1 - y)^2} a_3(x) \right] \qquad \qquad \text{Suppressed by small values of } C_2, \text{ y-factor}$$

$$a_1(x) = 2 rac{\sum C_{1q} e_q(q + \bar{q})}{\sum e_q^2(q + \bar{q})}$$
 C_{1u}=-0.19, C_{1d}=0.34

Expanding about $u_A = d_A$ limit, neglecting sea quarks:

$$a_1(x) \approx \frac{9}{5} - 4\sin^2\theta_W - \frac{12}{25}\frac{u_A^+ - d_A^+}{u_A^+ + d_A^+} \qquad q^\pm = q(x) \pm \bar{q}(x)$$

PVDIS directly sensitive to difference in up and down quark distributions in nuclei

Flavor Dependence from PVDIS

Jefferson Lab

Cloët, Bentz, and Thomas, PRL 109, 182301 (2012)

PVEMC with SoLID

High precision measurement possible with proposed SoLID spectrometer in Hall A

Two proposed SoLID configurations:

- PVDIS → planned measurements on proton and deuteron
- 2. SIDIS/J/ ψ

PVEMC measurement requires target with $N \neq Z$ and large EMC effect

→ ⁴⁸Ca satisfies both requirements with smaller radiation length than heavier targets (e.q., gold or lead)

Projections - Sensitivity

Jefferson Lab

C12-22-002: Conditionally approved to run in Hall A using SoLID (50 days)

What about anti-quarks?

N (target) $x_2 \bar{q}$ $x_1 q$ γ^* γ^* μ^-

Most models of the EMC effect ignore anti-quarks

- The "pion excess" picture suggests that the anti-quark distributions should be enhanced in nuclei
 - Measured using Drell-Yan reaction by E772 at Fermilab
- Significant contributions from nuclear pions ruled out
- Limited x range

٠

E906 (SEAQUEST) should provide improved precision at larger x Jefferson Lab

D.M. Alde et al., PRL64: 2479 (1990)

SEAQUEST results

- No enhancement seen as in the case of a pion excess model!
- EMC like behavior is displayed but results are consistent with 1

Slide courtesy Arun Tadepalli

SEAQUEST Comparison with E772

- No enhancement seen as in the case of a pion excess model!
- EMC like behavior is displayed but results are consistent with 1
- Basically in agreement with E772 results in the overlap region
 Jefferson Lab

Further Studies of the EMC Effect via Inclusive Target Ratios?

EMC effect has been studied extensively via A/D ratios – what more can we learn?

→Additional light and heavy nuclei
 →Light nuclei allow use of "exact" nuclear wave functions
 →Explore EMC-SRC connection via A dependence at ~ fixed N/Z, N/Z dependence at ~ fixed A
 →Flavor dependence from inclusive measurements?

JLab E12-10-008: More detailed study of Nuclear Dependence

Spokespersons: J. Arrington, A. Daniel, N. Fomin, D. Gaskell

E03-103: EMC at 6 GeV

- \rightarrow Focused on light nuclei
- \rightarrow Large EMC effect for ⁹Be
- \rightarrow Local density/cluster effects?

J. Seely, et al., PRL 103, 202301 (2009)

E12-10-008: EMC effect at 12 GeV

- \rightarrow Higher Q², expanded range in x (both low and high x)
- → Light nuclei include ¹H, ²H, ³He, ⁴He, ⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹¹B, ¹²C
- → Heavy nuclei include ⁴⁰Ca, ⁴⁸Ca and Cu and additional heavy nuclei of particular interest for EMC-SRC correlation studies

JLab: E12-10-008 (EMC) and E12-06-105 (x>1) – Exploring the EMC-SRC Connection

 Both experiments use wide range of nuclear targets to study impact of cluster structure, separate mass and isospin dependence on SRCs, nuclear PDFs

 Experiments will use a common set of targets to provide more information in the EMC-SRC connection

> Heavier nuclei: Cover range of N/Z at ~fixed values of A

Light nuclei: Reliable calculations of nuclear structure (e.g. clustering)

EMC Effect in ¹⁰B and ¹¹B

A few days of the allocated time E12-10-008 used in 2018 to help commission the new Hall C equipment after 12 GeV upgrade

EMC Effect in ¹⁰B and ¹¹B found to be similar to ⁴He, ⁹Be, ¹²C

 → Both boron isotopes have significant α cluster structure like ⁹Be and ¹²C
 → Reinforces "local density" picture

EMC Effect in ¹⁰B and ¹¹B

A few days of the allocated time E12-10-008 used in 2018 to help commission the new Hall C equipment after 12 GeV upgrade

EMC Effect in ¹⁰B and ¹¹B found to be similar to ⁴He, ⁹Be, ¹²C

- → Both boron isotopes have significant α cluster structure like ⁹Be and ¹²C
- \rightarrow Reinforces "local density" picture

Can also define the "relative 2-nucleon overlap"

$$O_{rel} = \langle O_N \rangle - \langle O_D \rangle$$

Derived from probability to find 2 nucleons "close" to each other

Flavor dependence from Inclusive ⁴⁰Ca and ⁴⁸Ca

Measure inclusive EMC effect for similar A, different N/Z

```
CBT model predicts a ~3% effect for <sup>48</sup>Ca at x=0.6
\rightarrow N/Z = 1.4
```

If there is no flavor dependence, difference between ⁴⁰Ca and ⁴⁸Ca should be less than 1% (SLAC E139 A-dependent parametrization)

E12-10-008 expands on this idea by measuring several nuclei with similar A, but varying N/Z

Preliminary Extraction of N/Z Dependence

Cameron Cotton (UVa) focused on study of N/Z dependence of EMC Effect

- → Extracted size of EMC Effect for ⁴⁰Ca, ⁴⁸Ca, ⁴⁸Ti, ⁵⁸Ni, ⁶⁴Ni, ⁵⁴Fe
- → Removed A-dependence of EMC Effect using fit to isoscalar nuclei
- → Compared A>40 nuclei relative to ⁴⁰Ca

Model from Cloët, Bentz, and Thomas would result in larger EMC Effect for ⁴⁸Ca→ results suggest little or no difference

Trend vs. N/Z also not understood

Ratios above all relative to deuterium → there is a correlated error that should be removed → Purple error bar = estimated uncertainty after removing correlated piece

Spectator Tagging and the EMC Effect

Spectator tagging can be used to determine the kinematics of the struck nucleon

2 complementary programs of "tagged EMC" measurements at JLab

1. Low energy recoil detector for reconstructing residual, recoiling nucleus

2. Backward angle proton/neutron detectors to sample high momentum (hundreds of MeV) nucleons

Spokespersons: O. Hen, L. Weinstein, S. Gilad, S. Wood. H. Hakobyan

E12-11-107 (Hall C) and E12-11-003a (Hall B)

Measure structure function of high momentum nucleon in **deuterium** by tagging the spectator \rightarrow Take ratio of yield at large x (EMC region) to low x (no EMC expected) \rightarrow Requires new, large acceptance proton/neutron detectors at back angles

Jefferson Lab

ALERT Program in Hall B

→ Significant difference between "x-rescaling" (binding) and Q^2 rescaling models

1.4

 $Q^2 = 5 \text{ GeV}^2$, x = 0.6

1.2

 α_{s}

1.3

1.1

0.7

Polarized EMC Effect

Intermediate conclusions

- Connection between EMC Effect and SRCs and theory developments have suggested new avenues of investigation
 - Tagged EMC measurements
 - Investigation of flavor dependence (valence)
 - Several methods \rightarrow preliminary Hall C results
 - Spin-dependent EMC effect

Nuclear dependence of structure functions

Experimentally, we measure cross sections (and the ratios of cross sections)

$$\frac{d\sigma}{d\Omega dE'} = \frac{4\alpha^2 (E')^2}{Q^4 v} \bigg[F_2(v,Q^2) \cos^2 \frac{\theta}{2} + \frac{2}{Mv} F_1(v,Q^2) \sin^2 \frac{\theta}{2} \bigg] \qquad F_2(x) = \sum_i e_i^2 x q_i(x)$$

$$R = \frac{\sigma_L}{\sigma_T} = \frac{F_2}{2xF_1} \bigg(1 + 4\frac{M^2 x^2}{Q^2} \bigg) - 1 \qquad \epsilon = \bigg[1 + 2 \bigg(1 + \frac{Q^2}{4M^2 x^2} \bigg) \tan^2 \frac{\theta}{2} \bigg]^{-1}$$

$$\frac{\sigma_A}{\sigma_D} = \frac{F_2^A (1 + \epsilon R_A) (1 + R_D)}{F_2^D (1 + R_A) (1 + \epsilon R_D)} \qquad \text{In the limit } R_A = R_D \text{ or } \epsilon = 1$$

$$\sigma_{A}/\sigma_D = F_2^{A}/F_2^D$$

Experiments almost always display cross section ratios, σ_A/σ_D

 \rightarrow Often these ratios are labeled or called F_2^A/F_2^D

→ Sometimes there is an additional uncertainty estimated to account for the $\sigma \rightarrow F_2$ translation. Sometimes there is not.

World Data on R_A/R_D

<u>SLAC E140:</u> *PRD 49, 5641 (1994)* R_A - R_D for Fe, Au **Only true Rosenbluth separated data**

<u>NMC:</u> *Phys. Lett. B 294, 120 (1992)* R_{Ca} - R_C *Nucl. Phys. B 481, 23 (1996)* R_{Sn} - R_C Multiple beam energies, R_A - R_C extracted using Q^2 dep. fit at fixed x

<u>HERMES:</u> Phys Lett. B 567, 339 (2003) R_A/R_D for Kr, N, ³He **Fit s dependence at fixed x for s**

Fit ε dependence at fixed x for single beam energy (changing Q^2)

39

SLAC E140: *R*_{*A*}-*R*_{*D*}

[E140 Phys. Rev. D 49 5641 (1993)]

E140 measured ε dependence of cross section ratios σ_A/σ_D for

x=0.2, 0.35, 0.5 $Q^2 = 1.0, 1.5, 2.5, 5.0 \text{ GeV}^2$ Iron and Gold targets

 $R_A - R_D$ consistent with zero within errors

No Coulomb corrections were applied

Large ε data: $E_e \sim 6-15 \text{ GeV}$ $E_e' \sim 3.6-8 \text{ GeV}$ Low ε data: $E_e \sim 3.7-10 \text{ GeV}$ $E_e' \sim 1-2.6 \text{ GeV}$

Coulomb Distortion in Heavy Nuclei

Electrons scattering from nuclei can be

accelerated/decelerated in the Coulomb field of the nucleus

- → This effect is in general NOT included in most radiative corrections procedures
- → Coulomb Corrections are perhaps more appropriately described in terms of multi-photon exchange, but Coulomb Corrections provide convenient shorthand
- Well-known effect in QE scattering relevant particularly for Coulomb sum rule
- Can be calculated in QE using DWBA → experimentalists use Effective Momentum Approximation (EMA) to apply corrections to data
- Comparisons of EMA with detailed DWBA calculations resulted in "improved EMA"

$$E_e \rightarrow E_e + V_0$$
 $E_e' \rightarrow E_e' + V_0$ with "focusing factor" $F^2 = (1 + V_0/E_e)^2$
 $V_0 \rightarrow (0, 7 - 0, 8) V_0$ $V_0 = 3\alpha(Z - 1)/2R$

efferson Lab ^[Aste et al, Nucl. Phys. A, 806:191-215 (2008) Eur.Phys.J.A26:167-178,2005, Europhys.Lett.67:753-759,2004] 41

Electron-Positron Comparisons in QE Scattering

Gueye et al., PRC60, 044308 (1999)

- Comparisons of electron and positron scattering have been performed in QE scattering
- Were used to fit V_0 in context of EMA
- $V_0 = 10$ MeV for Fe, 20 MeV for Fe

Coulomb Corrections in Inelastic Scattering

- E. Calva-Tellez and D.R. Yennie, Phys. Rev. D 20, 105 (1979)
 - Perturbative expansion in powers of strength of Coulomb field
 - Effect of order $\rightarrow -\frac{Z\alpha}{12} \frac{(Q^2)^2}{\nu^2} \frac{(E_e + E'_e)}{E_e E'_e} < r >$
 - "For any reasonable kinematics, this is completely negligible" → plugging in JLab/SLAC kinematics, this is not true!
- B. Kopeliovich et al., Eur. Phys. J. A 11, 345 (2001)
 - Estimates non-zero effect using Eikonal approximation → applies estimates to vector meson production, not DIS
- O. Nachtmann, Nucl. Phys. B 18, 112 (1970)
 - Coulomb Corrections for neutrino reactions
 - DWBA calculation that results in modifications to structure functions → "at most 5%" effects for energies > 1 GeV
 - Final state particle only, not directly applicable to electron/positron scattering

R_A-R_D: E140 Re-analysis

R_A-R_D at *x*=0.5 (combined analysis)

Combined analysis of SLAC E139, E140 and JLab 6 GeV data for Fe/Cu at x=0.5, Q²~5 GeV²

Nuclear Dependence of R

Combined fit to SLAC E139, E140, and JLab E03103 data \rightarrow Examined A-dependence of R_A - R_D at x=0.5, Q²=5 GeV²

Data lack precision to make definitive conclusion

 \rightarrow More data required!

Other Hints of non-zero R_A-R_D

<u>NMC results for *R*_{Sn}-*R*_C systematically larger than zero</u>

 $R_{Sn} - R_C = 0.040 + -0.026 \text{ (stat)} + -0.020 \text{ (sys)}$

→Averaged over x=0.0125 – 0.45 → $<Q^2>$ = 10 GeV²

What are the consequences for A/D ratios for F_1 and F_2 if this is true?

V. Guzey et al, PRC 86 045201 (2012)

Consequences of R_A-R_D >0

Anti-shadowing disappears for F_1 ratio, remains for F_2

Anti-shadowing from longitudinal photons?

V. Guzey et al, PRC 86 045201 (2012)

Consequences of $R_A - R_D > 0$ $\frac{\sigma_A}{\sigma_D} = \frac{F_1^A(x)}{F_1^D(x)} \left[1 + \frac{\epsilon(R_A - R_D)}{1 + \epsilon R_D} \right]$

 F_1 ratio purely transverse

- Anti-shadowing disappears for F_1 ratio, remains for F_2
- Anti-shadowing from longitudinal photons?
- Non-trivial change to EMC ratio at larger x
- Parton model: $R=4 < k_T^2 > /Q^2$
 - <k_T²> smaller for bound nucleons?
 [A. Bodek, PoS DIS2015 (2015) 026]

Nuclear Dependence of *F*_{*L*}

Longitudinal cross section also has contributions from gluons→ measurements of R could provide constraints on gluon distributions

Jefferson Lab E12-14-002

- Precision Measurements and Studies of a Possible Nuclear
 Dependence of R=σ_L/σ_T [S.
 Alsalmi, M.E. Christy, D. Gaskell, W.
 Henry, S. Malace, D. Nguyen, T.J.
 Hague, P. Solvignon]
- Measurements of nuclear dependence of structure functions, *R_A-R_D* via direct L-T separations

Detailed measurements of x and Q^2 dependence for Copper target \rightarrow A dependence at select kinematics using C and Au

Jefferson Lab E12-14-002

proposed measurements

0.2

E140 (Fe, Au)

0.2

Solvignon et al.

Depends critically on correct application of Coulomb Corrections

E12-14-002 and Coulomb Corrections

Coulomb corrections a key systematic issue for E12-14-002

- → L-T separations require varying epsilon. Smaller epsilon corresponds to smaller beam energies and scattered electron momenta → larger Coulomb corrections
- → Size of Coulomb correction highly correlated with the very effect we are trying to study
- \rightarrow Need robust tests to verify CC magnitude and epsilon dependence

Testing Coulomb Corrections with Electrons

Coulomb corrections can be tested by measuring target ratios at fixed x and ε \rightarrow Varying Q² allows us to change E and E' and hence size of CC

E12-14-002 Coulomb Corrections Test

CC test will measure precise Au/D ratios in HMS \rightarrow 2 shifts (16 hours) at 60 μ A

Testing Coulomb Corrections with Positrons

Positron beam at JLab an excellent opportunity for studying Coulomb Corrections in DIS

Key questions:

- 1. Are Coulomb Corrections relevant for DIS?
 - For QE scattering effects have been clearly observed experimentally consensus that CC are required
 - "Makes sense" that they should be needed for DIS, but proof is needed
- 2. Is the Improved Effective Momentum Approximation (EMA) adequate/appropriate for DIS?
 - EMA has been checked/optimized in QE scattering via comparisons to DWBA calculations
 - Equivalent calculations for DIS appear to be more challenging and perhaps model dependent

Future 12 GeV Ce⁺BAF Accelerator Complex

Jefferson Lab

Slide courtesy Joe Grames, Positron Working Group Meeting, March 2025

JLab Positron Program (so far..)

NUMBER	TITLE	PHYSICS THEME	CONTACT PERSON	HALL	DAYS AWARDED	SCIENTIFIC RATING	PAC DECISION
PR12+23-002	Beam Charge Asymmetries for Deeply Virtual Compton Scattering on the Proton at CLAS12	GPDs	Eric Voutier	В	100	A-	C1
PR12+23-003	Measurement of Deep Inelastic Scattering from Nuclei with Electron and Positron Beams to Constrain the Impact of Coulomb Corrections in DIS	TPE	Dave Gaskell	с	9.3	A -	C1
PR12+23-006	Deeply Virtual Compton Scattering using a positron beam in Hall C	GPDs	Carlos Muñoz Camacho	с	137	A-	C1
PR12+23-008	A Direct Measurement of Hard Two-Photon Exchange with Electrons and Positrons at CLAS12	TPE	Axel Schmidt	В	55	Α	C1
PR12+23-012	A measurement of two-photon exchange in unpolarized elastic positron-proton and electron-proton scattering	TPE	Michael Nycz	с	56	A-	C1
PR12+24-005	A dark photon search with a JLab positron beam	BSM	Bogdan Wojtsekhowski	В	55	A-	C1

JLab E12+23-003

E12+23-003 [D. Gaskell, N. Fomin, W. Henry] will perform CC test w/positrons at same kinematics as E12-14-002

- \rightarrow Conditionally approved in 2023
- → Will allow **direct** comparison of electrons and positrons
- → Target ratios (Au/D) minimize uncertainty in e+/e- comparison
- Measurement requires only one of the Hall C spectrometers
- → Even with low maximum beam current (1 µA), short run time

Measurement time with overhead <10 days

Coulomb Corrections Test: Electrons and Positrons

Cleanest measurement of CC from super-ratio for e+/e-: → Insensitive to assumptions in electron/positron-only CC test

Summary: Part 2

- In addition to studying the EMC Effect important to constrain assumptions behind EMC Effect measurements
- Measuring the nuclear dependence of R experimentally challenging, but ideally suited for JLab and Hall C
 - Coulomb corrections a crucial question
 - Can be quantified with a possible positron beam

