
Spin lecture

I. INTRO, SPIN IN A PREFERRED FRAME (SLIDES, WILL BE ADDED HERE)

• What is spin (examples, audience, polarization, spin decomposition)

• Connection with rotations

• Density matrix (general, spin specific, reduced density matrix pure/mixed states, properties, diagonalization)

• entanglement entropy

Density matrix is a 2j + 1 by 2j + 1 Hermitian matrix. Can we decompose it on a basis of such matrices? Yes...
We can use

1. The identity matrix

2. The 3 matrices of the rotation operators for spin j. These are Hermitian and traceless (SU(2)). This is a vector
Si for SU(2).

3. We can build higher order tensors that transform like SU(2) irreps (L = 1, 2, . . .) by taking symmetrized and
traceless products of SiSj , SiSjSk, . . .. We cannot use antisymmetrized products (SU(2) algebra). This gener-
ates orthogonal subspaces...multipole decomposition. This procedure has to stop (we run out of independent
Hermitian matrices, the limit is L = 2j), which can be put on mathematical ground by using the Cayley-
Hamilton theorem. In the end we have

ρ =
1

2j + 1

(
1 + siSi + tijS[SiSj ] + . . .

)
, (1)

where the real coefficients (lower case) multiplying the matrices (upper case) share the same symmetry in indices
(symmetric and traceless), which can be used to determine the number of independent polarization parameters.
The si form a polarization vector, the tij a polarization tensor. Note that for L > 1 normalization coefficients
of the different terms are conventional. For spin 1/2 this reduces to the well-known

ρ =
1

2
(1 + s · σ) (2)

4. This multipole decomposition can also be understood from spin coupling:

j ⊗ j = 0⊕ 1⊕ . . .⊕ 2j. (3)

5. Note that the polarization coefficients can be obtained as the expectation values of the operators associated
with the matrices they multiply:

⟨Ŝi⟩ = Tr[ρSi] = si (4)

⟨S[ŜiŜj ]⟩ = Tr[ρS[SiSj ]] ∝ tij (5)

(6)

[Exercise:] How many independent parameters does the tensor polarization need? Use arguments based on 3 or
4 above.

Fun facts: the spin-1 λ = 0 pure state has s = 0. Each spin-1 pure state has tensor polarization!
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II. RELATIVITY, BOOSTS

Things get more involved once we include relativity and boosts, the possibility to change reference frames. The
rotation group gets enlarged to the Lorentz group with commutation relations

[Jl,Jm] = iϵlmnJn,

[Jl,Km] = iϵlmnKn,

[Kl,Km] = −iϵlmnJn. (7)

We see that Boosts Km transform as a vector under rotations, but more interestingly that the combination of boosts
results in a rotation! Given the link between spin and rotations this already hints at boosts being able to cause spin
rotation effects.

First, we discuss how things transform and we can get unitary representations of the Lorentz group for single
particle states. This means we will detail what exactly we mean by something like |p, jλ⟩, |p′, jλ⟩, and how we can
connect them by boosts. In the following Λ denotes a general Lorentz transformation (can be boosts, rotation or
a combination) and Lp is what is called the standard boost, and the discussion is specific for massive particles. We

start in the rest frame of the massive particle, which has the reference momentum
◦
pµ ≡ (m,0). We then consider

representations for the little group, which is the subset of Lorentz transformations that keep the rest frame momentum

invariant. These are the rotations of course, so we get SU(2) representations (spin) |◦p, λ⟩. Next we define states in a
moving frame by the following definition:

|p, jλ⟩ ≡ U [Lp] |
◦
p, jλ⟩ . (8)

We will detail what Lp is precisely in a minute (for now the only thing that is important is that Lp
◦
p = p). Before we

do so, we consider the effect of a general boost on these states

U(Λ)|p, jλ⟩ = U(Λ)U [Lp] |
◦
p, jλ⟩ = U(LΛp)U

−1(LΛp)U(Λ)U [Lp] |
◦
p, jλ⟩ = U(LΛp)U(L−1

ΛpΛLp) |
◦
p, jλ⟩ (9)

Here we introduced U(LΛp) and its inverse to relate our states to the |Λp, jλ states. If we consider the combination

of Lorentz transformations L−1
ΛpΛLp, we see that it leaves the rest frame momentum

◦
p invariant, which means it

can only be a rotation! This is the so-called Wigner rotation Rw[Λ, p, L]. Note that besides the actual Lorentz
transformation Λ, it also depends on the momentum p and the choice of standard boost. However, this allows us to
write

U(Λ)|p, jλ⟩ = U(LΛp)|
◦
p, jλ′⟩Dλ′λ(Rw[Λ, p, L]) = |Λp, jλ⟩Dλ′λ(Rw[Λ, p, L]), (10)

which furnishes a unitary but infinitely dimensional representation of the Lorentz group.
The conclusion is that boosts, in general, cause spin rotations. Standard boosts acting on rest frame states by

definition do not.
Short aside: by combining creation/annihilation operators with the D(Lp) part of the Wigner rotation one gets

objects that transform with D(Λ), and we get finite-dimensional (no more p dependence) but non-unitary repre-
sentations of the Lorentz group, which forms the basis of the field construction.
Before we continue, what are the standard boosts?
In principle, anything that gets you to p is possible, but there are 3 common choices:

1. Canonical Lc: pure boost in the direction of the momentum.

2. Helicity Lh: boost in the z-direction to |p| followed by a rotation to the final direction (θ, ϕ).

3. Light-front helicity Lf : boost in the z-direction to |p| followed by transverse light-front boosts (mixing p− and
p1, p2) to the final momentum.

They each have specific advantages:

1. Canonical: the Wigner rotation of a rotation r is that rotation

Rw([r, p, Lc]) = r. (11)

This is convenient when coupling angular momenta: all states/particles if represented by canonical states trans-
form with the same Wigner rotation under a rotation, which allows for the use of CG coefficients as is usual in
NRQM.



3

2. Helicity: the Wigner rotation of a rotation r is just a phase, so there is no spin rotation in that case. Hence
helicity is conserved under rotations...

3. Light-front helicity: the light-front boosts form a closed subalgebra (any combination of light-front boosts does
not result in a rotation). As a consequence the Wigner rotation of a light-front boost is the identity.

Rw([ΛLF , p, Lf ]) = 1. (12)

So we can light-front boost all we want, this does not induce additional spin rotations for light-front helicity
states.

How are states defined with different standard boosts defined? Let’s consider two (general) different standard
boosts Lα, Lβ , we consider

|p, jλ⟩α = U(Lαp)|
◦
p, jλ⟩ = U(Lα,p)U

−1(Lβ,p) |p, jλ⟩β = U(Lα,pL
−1
β,p)|p, jλ⟩β ≡ |p, jλ′⟩D(RM [p, Lα, Lβ ]), (13)

where the last step is possible given that the combination of the two standard boosts is a rotation (leaves the rest
frame momentum invariant) and the resulting rotation is called the Melosh rotation, which is again momentum
dependent. Thanks to Melosh rotations we can always relate two different sets of spin-states that differ by the
choice of standard boost. If we consider a state |p, jλ⟩, depending on which choice of standard boost we pick, we end
up with a different basis of spin states in its rest frame, where all those bases are related by their respective Melosh
rotations. [A particle has an infinite number of rest frames, all related by rotations].

An example is the appearance of the Melosh rotations in the light-front deuteron wave function. They appear in
the transition from light-front to canonical spin states, where the latter are the ones that are used in the angular
momentum coupling of the two nucleons to the deuteron J = 1 state.
What does this all mean for the transformation of the density matrix when we change between frames? Let’s

consider ∑
λλ′

ρλλ′⟨p, jλ′|Ô|p, jλ⟩, (14)

where Ô is some Lorentz invariant operator (the following argument can be generalized to cross sections etc.). We
write ∑

λλ′

ρ(p)λλ′⟨p, jλ′|Ô|p, jλ⟩ =
∑
λλ′

ρ(p)λλ′⟨p, jλ′|U−1(Λ)U(Λ)ÔU−1(Λ)U(Λ)|p, jλ⟩ (15)

=
∑
λλ′

ρ(p)λλ′⟨p, jλ′|U−1(Λ) Ô U(Λ)|p, jλ⟩ (16)

=
∑

λλ′,αα′

ρ(p)λλ′D∗
α′λ′(Rw[Λ, p, L])⟨Λp, jα′|Ô|Λp, jα⟩DαλRw[Λ, p, L], (17)

=
∑
αα′

[
D†(Rw[Λ, p, L])ρ(p)D(Rw[Λ, p, L])

]
αα′ ⟨Λp, jα′|Ô|Λp, jα⟩ (18)

=
∑
αα′

ραα′(Λp)⟨Λp, jα′|Ô|Λp, jα⟩, (19)

and we see that the density matrix transforms with the (momentum-dependent) Wigner rotations! This also means
that the density matrix in the frame reached by the standard boost is identical to that in the rest frame (for that
particular choice of standard boost).
Fun fact: the Von Neumann entropy is not a Lorentz invariant unless the states are momentum plane waves.
One drawback so far: density matrix defined using rotational invariant objects, suffers from Wigner rotations. We

like to use covariant/invariant objects and so are our final answers in cross section calculations etc. Can we engineer
something that bridges these things...yes! Attach to the density matrix the objects which also undergo (the opposite)
wigner rotations, which are the wave functions (spinors, four vectors, tensors) of the particle under consideration.

[no detailed derivations, stating results here]
For instance for spin 1/2, we consider

ρ =
∑
λλ′

ρλλ′u(p, λ)ū(p, λ′) (20)

which is now a covariant matrix in spinor indices. The standard properties of the density matrix now translate into
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1. Tr ρ = 2m

2. The Hermiticity requirement becomes γ0ρ†γ0 = ρ

3. It obeys the wave function constraints (= Dirac equation here) (pµγµ − m)ρ = ρ(pµγµ − m) = 0. Note that
condition 1 with one of the identities here implies the other.

[Exercise:] Show that by starting from a general expansion in the Dirac matrix basis (1, γ5, γ
µ, γµγ5, σ

µνγ5) the
standard expression can be obtained

ρ(p) =
∑
λλ′

ρλλ′u(p, λ)ū(p, λ′) = (pµγµ +m)

(
1 + (s · γ)γ5

2

)
, (21)

where (p.s) = 0 also follows from imposing the requirements. Hint: the third requirement can be imposed by writing
ρ = (pµγµ +m)(. . .) where the dots can be expanded on the whole Dirac basis.

In this last equation, sµ is called the polarization four vector and transforms as a (pseudo) four vector. It is the
covariant generalization of the 3D spin vector introduced earlier. By matching expressions in the rest frame, one

actually finds that in the rest frame
◦
s
µ
= (0, s). For different types of spinors (standard boosts) sµ can be found by

boosting with the standard boost from the rest frame: sµ = (Lp)
µ
ν

◦
s
ν
.

Note that sµ is a property of the density matrix, not individual states. This doesn’t mean people do not abuse
notation. Often found expressions in for instance TMD literature use

⟨p, S|Ô|p, S⟩ = expression(Sµ) , (22)

(there’s an implicit density matrix understood here, representing a general mixed state characterized by Sµ).
Similarly for spin-1 where four vector wave functions ϵµ(λ) (with (pϵ) = 0 as constraint) we can introduce (and

decompose)

ρµν =
∑
λλ′

ρλλ′ϵµ(p, λ)ϵ∗ν(p, λ′) =
1

3

(
−gµν +

pµpν

p2

)
+

i

2m
ϵµνρσpρsσ − tµν , (23)

where now again sµ, tµν are covariant versions of the 3D polarization vector and tensor, and reduce to them in the
rest frame (and completely orthogonal to pµ. Note that one shouldn’t confuse the four vector sµ (property of the
density matrix), with the spin wave function ϵµ. Both sµ and tµν can be written as quadratic functions of ϵµ.

III. OBSERVABLES: CASE STUDY SPIN-1

• covariant polarization parameters

• cross section expressions

• asymmetries

In this part we want to focus how all the previous aspects turn up in experimental observables, and how spin
can be used to isolate certain structures. We take the spin-1 deuteron as an example target, as it’s exhibits more
complications/features compared to the spin-1/2 case.

We start from the diagonalized (3 by 3) density matrix, which has 3 eigenvalues (2 independent, as they sum to 1).
From these eigenvalues the so-called degrees of vector and tensor polarization can be defined.

P = n+ − n− −1 < P < 1, (24)

Q = n+ + n− − 2n0 −2 < Q < 1. (25)

In this diagonalized frame, we have P = sz,Q ∝ tzz, which shows that they control the vector, resp. tensor polarization
of the deuteron. Other notations for Q : t20, Azz (up to proportionality).

[Exercise:] Rewrite the diagonalized 3 by 3 density matrix using only P,Q. Which values of P,Q do pure states
λ = ±1, 0 have? Check that for these pure states the statement at the end of the first section is valid (each pure state
has tensor polarization)
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Any cross section is linear in the target density matrix, which means that it will be linear in {1,P,Q}. This leads
to expressions like (for electron scattering)

dσ = dσunpol

(
1 + hAe + PAV + hPAeV +

Q
2
AT +

hQ
2

AeT

)
, (26)

where h = ±1/2 is the electron helicity, and the different Ai define asymmetries. These can be separated in single and
double spin asymmetries. For only electron polarization, one has the beam-spin asymmetry. The vector and tensor
polarization generate single and double vector and tensor polarized asymmetries.

[Exercise:] Using the results of the previous exercise (values of P,Q for the pure states), find which combination
of the deuteron pure states and electron helicities isolate the different asymmetries (and unpolarized cross section).
What are the limits for the tensor asymmetry introduced this way?

One thing Eq. (26) misses is information of the geometry. How does the orientation of the density matrix (polar-
ization axis) compare to the kinematics of the reaction. In a way, Eq. (26) oversimplifies things (in notation). All
asymmetries written in the equation carry additional dependence on this geometry, or equivalently the orientation of
the polarization axis; only the strengths (eigenvalue related P,Q are separated out.
However, we can get the full geometry from the covariant sµ, tµν in combination with the four vectors of particles

in the reaction: pD, q, ph. We can construct a basis with the kinematical vectors that corresponds to the x, y, z axes
in the collinear rest frame where the photon is along the negative z-axis. The expressions are completely invariant:

SL =
(sq)

(pDq)

m√
1 + γ2

, ST cosϕS = . . . (27)

They have a physical interpretation in the aforementioned rest frame (compare to the invariant p2 = m2 which has
the interpretation as mass in the rest frame). It is these invariants that appear in cross section expressions for more
involved processes (polarization, detected final state particles).

Advantage: we’re using completely covariant objects and constructing invariants from them. It does not matter in
which frame we do this!

How does it work in practice:

1. use a polarimetry reaction to determine invariants built from covariant polarization vector/tensor etc. [Subtlety,
since our L/T separation is relative to q, this is event per event dependent, so an additional rotation might be
needed to make this determination more uniform?]

2. this gives complete information to reconstruct the full covariant density matrix in any frame.

3. From there we can use the polarization information for any other reaction.

Does the form of standard boost (dynamics/form) play in a role in all of this? No. It is the covariant density
matrix that is the object of interest, which is independent of all of this (measurement determines this). Different
forms will lead to different ρλλ′ density matrices (as the wave functions are different), which are density matrices in
different rest frames (different standard boosts). These rest frames are then in general different from the one where
the q-vector is along the z-axis. The additional rotation makes all density matrices agree again (wonderful !). We
already have these values immediately from the decomposition with invariants (SL, ST etc.).
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