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Introduction

Machine Learning in Nuclear Physics

Boehnlein, Amber, et al.

e Two useful reviews "Colloquium: Machine learning in nuclear physics."
Reviews of modern physics 94.3 (2022): 031003.

Alexander Scheinker

Accelerator Operations and Technology Division Applied Electrodynamics Group,
Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA

Computing and Software for Big Science (2024) 8:5
https://doi.org/10.1007/541781-024-00113-4
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updates

Artificial Intelligence for the Electron lon Collider (AI4EIC)



Possible Uses

* Difficult to model/simulate, but you have lots of
data

* Time is crucial

e Care more about predictions than understanding

NOT always the right tool for the job



Categories

* Functional Approximation
 Classification
* Generation

* Chores



Functional Approximation



Feed-forward, Dense Neural Network

* Function R™ — R" composed of more
elementary functions:

(x) =Apoge--od;oo(x)

where:

A(x) = Wx + b,

and o is an ‘activation function’ (aka, non-
linear function):

* 0(X) = (0(x1),0(x2) ... 0 (X))




Universal Function Approximation Theorem

(Informal): A deep enough NN can approximate any function,
R™ —» R"
Neural Network:
f(x)=A,, 0 ..oc00A,000A;(x)
* Parameters: Weights & biases

* Doing more functional compositions (“adding” more layers) to
iImprove

Taylor Series (analogy):

y=ag+ a;x+ - ax"

e Parameters: Coefficients
* Adding higher order terms to improve



Training Procedure

: C e Want to minimize:
* Learning as an optimization problem

L
Example:

* Gradient descent (or variation) to L = MSE = lz(yi — 9,)?
determine parameters N &

* Train/validation/test split

Machine learns from this set Used to monitor learning; Final Evaluation
(‘lecture notes, homework’) Not just memorizing (‘final exam’)
(‘quizzes’)




NNPDF NINPDF

* PDF sets start with parameterizes
fi(x; Qg) https://nnpdf.mi.infn.it/

For users ~+ Docume

Example: CJ15 for valence u/d:

.-‘Ef[.-‘ii, Q%) = H{}xa' (] — ,x)ﬂz (] -+ a:“/E -+ a4x)_ Unpolarized PDF sets

§ Polarized PDF sets

Muclear PDFs

Fragmentation
functions

e Parameterizes f;(x, Q5) with NN

Meutrino Structure
Functions

* NNPDF 1.0 released 2008 roos



https://journals.aps.org/prd/pdf/10.1103/PhysRevD.93.114017

NNPDF 4.0

* Order: up to NNLO
¢ Ndata — 4‘,618

e Written in TensorFlow (past NNPDF’s
used in-house C++ code)

e Use of GPU’s and TensorFlow sped
fitting time by factor of x140

* Gradient descent optimization (vs.
genetic algorithm in 3.1)

Eur. Phys. J. C (2022) 82:428 THE EUROPEAN q
https://doi.org/10.1140/epjc/s10052-022-10328-7 PHYSICAL JOU RNAL C Check for

Regular Article - Theoretical Physics

The path to proton structure at 1% accuracy

NNPDF Collaboration

NNPDF4.0 NNLO Q= 3.2 GeV 10- NNPDF4.0 NNLO Q= 100.0 GeV

7 g/10 7 g/10
Uy MUy
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Evolution basis:
Y=utu+d+d+s+s5+2c,
T3:(u+r})—(d—|—c§) ,
Ts=(@w+u+d+d)—2(s+5)
V=@w—u)+(d—d)+(s—53),
Vi=(u—u)—(d—d),
Vs=(w—ua+d—d)—2(s—5).

Tis=(@w+iu+d+d+s+5)—3(c+?)

In addition: g 10



NNPDF 4.0 — Training
Procedure

* Single network for all PDF’s

xfi (x, Q03 0) = Ap x' 7% (1 — x)P*NNy (x; 0),
k=1,...,8,

e 763 free parameters (NNPDF 3.1:
296)

Inx =2

n® =25

AL ] L NN

(xe(, Q)  xZ(x,0) V(. Q)  xVs(x, Q) xVy(x,0) xTi(x,0p) xTy(x,Qp)  xTy5(x,Qp))

Activation function hyperbolic tangent

Neural Net fi (mik)) > —> F'I\:;l;

/ \
(=4} [ﬁ(xg’“)))—{normalization] 1 ®
\ /’

z (1 — x)P fi@Fy > e — Fr/,

Fig. 4 Diagrammalic representation of the calculation of the x? in the NNPDF fitting framework as a function of the values of {x,(,k)} for the
different datasets. Each block indicates an independent component
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NNPDF 4.0 - Results

e Results

HERA I+l inclusive NC e *p 920 GeV Q (GeV) = 1.871

-
Q (GeV) = 1.871
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Neural Operators

e Often you don’t won’t to solve just
single function

E.g, given different initial field condition,
want the evolution of system

functionl — function2

Theorem (informal): neural networks can
approximate an operator

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 4, JULY 1995

Universal Approximation to Nonlinear Operators
by Neural Networks with Arbitrary Activation
Functions and Its Application to Dynamical Systems

Tianping Chen and Hong Chen
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Neural Operators

Journal of Machine Learning Research 23 (2022) 1-97 Submitted 12/21; Revised 10/22; Published 12/22

Neural Operator: Learning Maps Between Function Spaces
With Applications to PDEs

Nikola Kovachki*f NKOVACHKI@NVIDIA.COM Nvidia

Zongyi Li* ZONGYILI@CALTECH.EDU Caltech
Burigede Liu BL377 @CAM.AC.UK Cambridge University
Kamyar Azizzadenesheli KAMYARA @NVIDIA.COM Nvidia

Kaushik Bhattacharya
Andrew Stuart

BHATTA @ CALTECH.EDU Caltech
ASTUART@CALTECH.EDU Caltech

Anima Anandkumar ANIMA @CALTECH.EDU Caltech

* Continuous generalization of regular NN’s
layers (basically)
U1 (x) = o | | dx'i(x, xHu;(x") + b(x)

e Surrogate models: trained on data from
simulations

e Often faster than numerical simulations

Initial Condition
_——

‘=i NN N

—— . —— s

N N

(c) Lead Time: 72 hours

Ground Truth

Prediction
A

(b) Lead Time: 36 hours

TCWV

60
50

40

Kg/m?

30
10

20

- . R
209.75 172.25 134.75 97.25 209.75 172.25 134.75 97.25

FourCastNet: A global data-driven high-resolution

weather model arXiv: 2202.11214 14



Fourier Neural Operators

* FNO fundamental layer, choose translation invariant k(x, x'):
Ui1(x) =0 (fdx’ k(x —xDu;(x") + b(x))

* For integral: .
fdx’ kK(x —xDu(x) = z K(Xj — x'k)u(x,’{) for each x;
i=1

Convolution theorem: convolution in position space becomes product in

Fourier space
N

F U F Zk(xj —xulx) | | = F Y FE)FW))

=1

e Advantage: O(N?) - O(NIn N) using FFT

15



Scattering with NO

* For non-relativistic scattering:
¥Y(x,T) = S[V(x)|¥(x,0).
S[V(Z)] = T amilh J; "HV(3)]dt

W%, T) = N[V(), ¥(Z,0)].

o (X, kT) = N*[V(X),¥(%,0)],

¥ (x, )]

Ground truth  Neural operator  10% x Error

16



Scatte ri ng With N O d N | CN time|CN memory NO time NO memory Error

1 256 0.013 0.004 0.002 0.13 0.0005

1 2048 0.2 0.3 0.003 0.14 0.004
1 1638« 56 20 0.003 0.2 0.004
1 3276¢ X >40 0.003 0.3 X
. 2 64 0.5 0.6 0.005 0.16 0.0011
* Faster, less memory intense than 2 sl 2 |0 foms |02 oo
standard Crank-Nicholson (CN)
method

;;i | Testy—1
] ] \éf 0.999 Traing—; = Traing—i
e Unitarity mostly obeyed = Testy_o Testy_o
0.998 - Traing—o Traing—o
0 4000 8000 0 100 200
Frequency t/T
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Scattering with NO

e 2D Double Slit Experiment

¥ (x, )]

errors. For example, given that neural operators represent
physics 1n unconventional ways, would cheaply obtainable

training data (e.g., coming from exactly solvable systems)
suffice to learn solutions to conventionally difficult prob-
lems? We leave a study of this provocative question until
future work.

;- I N

0 0.250.50.75 0 0.250.50.759 0 0.250.50.75 1

L1 L1 L1
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Classification



Convolutional

Neural Network

* For 128 X 128 image

N~ 10* pixels

* For one dense layer, Input

Output
there are N2~ 108

weight parameters T

* CNN: only non-zero

weights around point

* Weights sharing:

same for every point

108 - 9

Input Output



Convolutional Neural Network

* Build up complexity

Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer
(input pixels)

Zeiler and Fergus (2014).

21
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Deep learning in color: towards automated

° D iffi C u It tO d iSti ng u iS h quark/gluon jet discrimination
I ig ht q u a r k a n d g | u O n Patrick T. Komiske,” Eric M. Metodiev® and Matthew D. Schwartz”

° t *Center for Theoretical Physics, Massachusetts Institute of Technology,

Cambridge, MA 02139, U.5.A.

b Department of Physics, Harvard University,
Cambridge, MA 02138, U.S.A.

E-rnail: pkomiske@nit.edu, metodiev@mit.edu,
schwartz@physics.harvard.edu

* Jet “images” : intensity
at local calorimeter
deposits

red = transverse momenta of charged particles

green = the transverse momenta of neutral particles

g o blue = charged particle multiplicity

convolutional layer dense layer

quark jet

. gluon jet
max-pooling

X3 22



Data

* pp at+\/s = 13 TeV
* 90 k training (10% val.)

* 10k testing

Range (GeV

100 — 110 100 000 Pythia
200 — 220 100 000 Pythia + Herwig
500 — 550 100 000 Pythia

1000 — 1100 100 000 Pythia + Herwig

23



Deep learning in color

* Matches or outperforms
traditional variables

* Insensitive to whether
Pythia/Herwig

Gluon Jet Rejection

Significance Improvement

1.0 T T
0.8} J
200 GeV Pythia
0.6 Girth
Charge Particle Multiplicity
Leading Energy Fraction
0.4H ...+ Two Point Moment
N95
— BDT of 5 jet obs.
0.2 | — Fisher LD
— Deep CNN grayscale
— Deep CNN w/ color
00 I I L L
0.0 0.2 0.4 0.6 0.8 1.0
Quark Jet Efficiency
3.5 T T T T
200 GeV Pythia
3.0} 4
25} g
2-0 B e . T
e I.‘.' N w ™ e,
15} ‘ e
1.0 L L 1
0.2 0.4 0.6

Quark Jet Efficiency

Gluon Jet Rejection

Significance Improvement

1.0
0.8} i
1000 GeV Pythia
0.6 Girth
Charge Particle Multiplicity
Leading Energy Fraction
0.4H «++ Two Point Moment
N95
— BDT of 5 jet obs.
0.2 — Fisher LD
— Deep CNN grayscale
— Deep CNN w/ color
00 1 1 1 Il
0.0 0.2 0.4 0.6 0.8
Quark Jet Efficiency
3.5 T T ‘
1000 GeV Pythia
3.0} i
25} g
201 E
15 i —’. " .......... T . ‘
1‘0 1 1 1
0.2 0.4 0.6

Quark Jet Efficiency
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DeepRich

* For deflection of internally
reflecting Cherenkov (DIRC)
detector at GlueX

e Full simulation slow

* Variational autoencoder (VAE)
forces data to lower
dimensional latent space

e Classifier uses latent space to
separate K & 's

LEARNING

PAPER

DeepRICH: learning deeply Cherenkov detectors

Cristiano Fanelli”©® and Jary Pomponi’

! Latent

/ Encoder | Space
TT 11 |
| = | [1eR™

¥ == == |

CNNMLP | @.
Classifier ‘

VAE
e Decoder
Classification
. Output | |
i € Rm 3
_ A Co-Inventor of VAE:

Ph.D. Thesis on quantum
gravity, advised by Gerard
‘t Hooft

| Max Welling.

25



DeepRich

* Latent space

e Classification ability
comparable to FastD

4 GeV

5 GeV

3D-visualization obtained from t-SNE

Table 3. The area under curve (%), the signal efficiency to detect pions €5 and the background rejection of kaons £5 corresponding to
the point of the ROC that maximizes the product £5¥eg. The corresponding momenta at which these values have been calculated are
also reported. This table is obtained by integrating over all the other kinematic parameters (i.e. a total of ~6k points with different

6, ¢, X, Y for each momentum).

DeepRICH FastDIRC
Kinematics AUC £ ER AUC £ ER
4 GeV/c 99.74 98.18 98.16 99.88 98.98 98.85
4.5 GeV/c 98.78 95.21 95.21 99.22 96.33 96.32
5GeV/e 96.64 91.13 91.23 97.41 92.40 92.47

26



DeepRich

.75

Tl
w
=

e
N
ot

* Advantage: speed.

.
o
=)

Inference time [ms]
L=
r
w

o
o
S

e Uses parallelism of GPU

S
)
R

Uikl 10° 10! 102

* Can do 10 particles in Betah.plze

~1.4 ms



Boosted Decision Trees

NOT a neural network or deep
learning approach

* Group of weak learning better
than individual

* Ensemble of decision trees
used in astrophysics as well
(paper: random forest instead
of BDT)

& o “
’/ + »/ + + \4

The quenching of galaxies, bulges, and disks since cosmic noon

A machine learning approach for identifying causality in astronomical data

Asa F. L. Bluck'*# , Roberto Mai(]lin{)]‘z, Simcha Bmwnson]‘z, Christopher J. Cunseliced, Sara L. Ellison?,
Joanna M. Piotrowska'-2, and Mallory D. Thorp®

28



XGBoost

* Developed for Kaggle’s Higgs Boson

Challenge

* Separate signal H — 77 from
background

* Features: # jets, derived mass, the
n, ¢, E7**° of various particles, etc.

e Won “ML meet HEP” Award:

“an excellent compromise between
performance and simplicity”

XGBoost: A Scalable Tree Boosting System

Tiangi Chen Carlos Guestrin
University of Washington University of Washington
tgchen@cs.washington.edu guestrin@cs.washingion.edu

Proceedings of the 22nd acm sigkdd international

conference on knowledge discovery and data mining.

2016.

Citations: ~53,000

The Higgs boson machine learning challenge

JMLR: Workshop and Conference
Proceedings 42:19-55, 2015

“Many successful solutions are
based on the XGBoost implementation of
boosted decision trees”

29


https://www.kaggle.com/c/higgs-boson
https://www.kaggle.com/c/higgs-boson
https://dl.acm.org/doi/pdf/10.1145/2939672.2939785
https://dl.acm.org/doi/pdf/10.1145/2939672.2939785
https://dl.acm.org/doi/pdf/10.1145/2939672.2939785
http://proceedings.mlr.press/v42/cowa14.pdf
http://proceedings.mlr.press/v42/cowa14.pdf

Boosted Decision Trees

Compared to deep learning methods:

* About as good for tabular data
* Faster to train
* Better interpretation

When data has locality or order (e.g.
image or time series) not as competitive

XGBoost is All You Need

What do | really mean by my (in)famous tagline, Part 1

BOJAN TUNGUZ
JAN 20, 2025

V)

49 0D 7 o1

XGBoost

30



Classification

Enhancing Lepton Identification in CLAS12 using Machine
Learning Techniques

At > 4.9 GeV, pions as well as
electrons and positrons produce
signal in High Threshold Cherenkov Bl

Counter at CLAS12, JLAB 3T 9

Spring 2019

Mariana Tenorio-Pita, ODU

Data Simulation

Signal 97.30% 99.36%

Background 10.73% 10.70%

* Used Boosted Decision Trees in
electron/positron identification

eeeeeeeeeeeeeeeee

e Performed better than neural
network


https://www.jlab.org/Hall-B/shifts/csc/slides/2024/JSAPoster2024_TenorioM.pdf-2024-06-05.
https://www.jlab.org/Hall-B/shifts/csc/slides/2024/JSAPoster2024_TenorioM.pdf-2024-06-05.

Generation



Generation

* We often need to generate samples
Examples:
* Monte Carlo for experimental analysis

* Lattice QCD: samples for calculations

Problem: these are often computationally expensive, need to generate many

33



Diffusion

* Took ideas from non-equilibrium
thermodynamics

* Add Noise to image

Zy = \/1_:Btzt—1+\/E€t

Et ~ N(O, I)
Asymptotically:

Deep Unsupervised Learning using
Nonequilibrium Thermodynamics

Jascha Sohl-Dickstein JASCHA @STANFORD.EDU
Stanford University

Eric A. Weiss EWEISS @ BERKELEY. .EDU
University of California, Berkeley

Niru Maheswaranathan NIRUM @ STANFORD.EDU
Stanford University

Surya Ganguli SGANGULI@ STANFORD.EDU
Stanford University

International conference on machine learning, 2015

Exercise: From Eqg. (1) and assuming f3; € (0,1), show
Z; = \/C(_tZ()‘l‘ 1—C(t€t

ae = ﬁ(l — Bi)
i=1

and, thus, the asymptotic limit z; = NV (0,1 ) holds.
Also,
Zi_ 1|24, 2

— ﬂ [1 — B.z, + \/,[))t(l — Q1) €,

where:

1—C(t 1_at 34


http://proceedings.mlr.press/v37/sohl-dickstein15.pdf

Diffusion

A
* Forward process: ‘adds’ (zt'zt )
Q(zt llzta
* Train neural network to B
‘denoise’ image’, one step |
at a time. ’ "
e Distributions analytic A llall all all

since made from

Gaussians Scheinker (2024)



https://www.nature.com/articles/s41598-024-70302-z.pdf

Diffusion

* To generate image, start with
Gaussian noise, then denoise

* Images high dimensional, often
performed in “latent space” (lower
dimensional representation of
data)

e Can generate high quality ‘images’,

T

A
xr=1 |

‘_E:_K—D—\—I-{.;::_j ‘KQV K;V PKV S

Denoising U-Net €p

Latent Space
Diffusion Process —)I
T

Q

=t =

2z |z
Pixel Space) |

\
\
\
A

6onditionina

Semanti

l Mapﬁ
Text

Repres
.entations |

denoising step crossattention

2 ST

switch  skip connection concat

T |

——
f

\ -7"\-. /
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Diffusion
* For EIC or JLab

* “Image”:¢ and n index

* “Intensity”: related to
2 pr,
——— COS 7;

Vs

Zj

with massless approx. used.

2 Zlmeas. <?
i

* Channels: PID;,
e, mtT Kt

Azimuth ¢

PHYSICAL REVIEW D 110, 016030 (2024)

Diffusion model approach to simulating electron-proton scattering events
Peter Devlin,"” Jian-Wei Qiu®,"" Felix Ringer®,"** and Nobuo Sato'*

"Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
2Depairtment of Physics, Old Dominion University, Norfolk, Virginia 23529, USA

® (Received 8 November 2023; accepted 27 June 2024; published 31 July 2024)

Scattered leading electron

Recoiling hadronic system

'

Pseudorapidity n

37



Diffusion

e Results

* Py8 — pix(64):

pixelation

do/d(z,n,¢) (A.U)

10"

1072k

(=]

1071

1{]—3-

10—1-

1,0—3-

0.0001 0.01
- o,
0.0001 0.01 1

0.0001 0.01
0.0001 0.01 1

0.0001 0.01

=

i -

0.0001 0.01 1
z

10—1.

10—3.

M Pythia 8
— Py8 — pix(64)
= Diffusion@pix(64)

P
- =

=7 =3 0 2 1
10—1.

10—3-

0.50r

0.25F

0.00t
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Diffusion

* All generated events had:

z z; e < 2
i

Py8 — pix(64)

—_—

-
—
L

102

10!

Py8 — pix(64)

0.01r

0.01F

=001 0.1

FIG. 8. Dihadron correlations comparing Pythia8 (left), the diffusion model (middle), and ratio to pythia8 (right): leading and subleading

10!
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Currents Trends Che New Alork Times

Powerful A.l. Is Coming. We’re Not Ready.

* A lot of open-source
. "If you really want to grasp how much better A.l. has
code to train on gotten recently, talk to a programmer. A year or two
ago, A.l. coding tools existed, but were aimed more at
speeding up human coders than at replacing them.
e LLM’s have improved in Today, software engine_ers tell me that A.l. does
di most of the actual coding for them, and that they
coding increasingly feel that their job is to supervise the
A.l. systems.

Jared Friedman, a partner at Y Combinator, a start-up
accelerator, recently said a quarter of the
accelerator’s current batch of start-ups were using
A.l. to write nearly all their code. “A year ago, they
would’ve built their product from scratch — but now 95
percent of it is built by an A.l.,” he said."

https://www.nytimes.com/2025/03/14/technology/why-

im-feeling-the-agi.html "



Research

ADVANCED

RESEARCH ARTICLE SCIENCE

@

www.advancedscience.com

Comparing Large Language Models and Human
Programmers for Generating Programming Code C 1.00 _I / ° °
Wenpin Hou* and Zhicheng ' ;

Easy tasks Medium tasks Hard tasks Overall

The performance of seven |

programming code using v
and task difficulties is systq
outperforms other LLMs, in
performance of GPT-4 varig

demonstrates strong capaly
programming languages an
efficiency of the code genen
programmers. GPT-4 is als
including front-end design
that GPT-4 has the potentiq
code generation and softws3
designed based on an optir
LLMs for programming.

Five-attempt | | One-attempt Five-attempt || One-attempt Five-attempt I | One-attempt Five-attempt | | One-attempt [

These results suggest that GPT il possesses
superior programming abilities compared to
most human programmers participating in these
contests, yet it still falls short of surpassing the
most elite human programmers in most
situations.”

strategy || feedback CI prompt Python3 translation || feedback prompt |\ repeated prompt | multiway prompt

success rate significantly different from *GPT-4 Python 3 repeated prompt * GPT-4 Python 3 feedback prompt * GPT-4 Python 3 feedback Cl prompt
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Historical Precedent

TEXAS INSTRUMENTS TI-3oxI[S

* Calculators, computers
refocused what humans do

* Human in loop is still
required




class AttentionBlock(layers.Layer):

Code Commenting

class AttentionBlock(layers.Layer): e .
— def __init__(self, units, groups=2, #*xkwargs):

Applies self-attention. g 5 o -
# Initialize the class with specified parameters for units and grouf
self.units = units
self.groups = groups
super().__init__(**kwargs)

Args:
units: Number of units in the dense layers
groups: Number of groups to be used for GroupMNormalization layer

# GroupNormalization layer to normalize input tensor by groups.
self.norm = layers.GroupNormalization(groups=groups)

# Dense layers for creating query, key, and value matrices with cust
self.units = units self.query = layers.Dense(units, kernel_initializer=kernel_init(1.8]
self.groups = groups 1f.key = layers.Dense(units, kernel_initializer=kernel_init(1.8))
super().__init (" “kwargs) .value = layers.Dense(units, kernel_initializer=kernel_init(1.0]

1f

Dense projection layer with kernel initializer set to zero.
self.norm = layers.GroupNormalization(groups=groups) 1f.proj = layers.Dense(units, kernel_initializer=kernel_init(e.e)]
self.query = layers.Dense(units, kernel_initializer-kernel_init(1.2)) AS ked LLIVI
self.key = layers.Dense(units, kernel initializer=kernel_init(1.8)) call(self, inputs):

self.value = layers.Dense(units, kernel_initializer=kernel_init(1.8)) t d m t # Extract batch size, height, and width from the input tensor.
self.proj = layers.Dense(units, kernel initializer-kernel init(2.2)) O Ocu en batch_size = tf.shape(inputs)[e]
height = tf.shape(inputs)[1]

f call(self, inputs): width = tf.shape(inputs)[2]
batch_size - tf.shape(inputs)[2] # Compute scale factor for the attention scores, inversely proportic
heigh; tf.shape(inputs)[1] scale = tf.cast(self.units, tf.float32) ** (-0.5)

def _ init_ (self, units, groups-8, kwargs):

width = tf.shape(inputs)[2]

scale = tf.cast(self.units, tf.float32) # Apply normalization to the input tensor.

inputs = self.norm(inputs)
# Generate query, key, and value matrices using dense layers.
f.query(inputs)
f.key(inputs)
elf.value(inputs)

inputs = self.norm(inputs)
q = self.query(inputs)
k = self.key(inputs)

v = self.value(inputs)

# Compute attention scores using Einstein summation for matrix multi

attn_score = tf.einsum( , g, k) * scale

attn_score = tf.reshape(attn_score, [batch_size, height, width, height * width]) # Reshape attention scores to collapse the spatial dimensions into ¢
attn_score = tf.reshape(attn_score, [batch_size, height, width, heic

attn_score = tf.einsum("bhwc, bHWc->bhwHW", q, k) * scale

attn_score = tf.nn.softmax(attn_score, -1)

attn_score = tf.reshape(attn_score, [batch_size, height, width, height, width]) # Apply softmax to normalize attention scores across spatial dimensi
attn_score = tf.nn.softmax(attn_score, -1)
proj = tf.einsum("bhwHi, bHWc->bhwc", attn_score, v) # Reshape back to split spatial dimensions after applying softmax.
proj = self.proj(proj) attn_score = tf.reshape(attn_score, [batch_size, height, width, heic
return inputs + proj
# Compute the weighted sum of value matrices using the attention scc
proj = tf.einsum( , attn_score, v)

httpSI//githUb.Com/keraS-tea m/keras_io/ # Pass the resulting projection through the projection dense layer.

proj = self.proj(proj)

blob/master/examples/generative/dd pm.py # Return the residual connection by adding the input to the output c

return inputs + proj




Other Applications

* Translating Code
* Error handling
e Code optimization

* Improve prose writing

\%® Los Alamos

HATIOMNAL LABORATORY

1663 / Translate Fortran to C++ with Al and RAG

Translate Fortran to C++

with Al and RAG

KYLE DICKMAN

Scientists are using artificial intelligence and
large language models to rewrite old code in

modern languages.

NBERHAVE T FELT SO
CLOSE O ANCTHER SOUL.

AND YET S0 HELPLESSLY ALONE.
AGWHEN T GOOGLE AN ERROR
AND THERES ONE RESULT

A HRERD BY SOMEONE
WITH THE SAME PROBLEN

AND NO ANSWER
LAST FOSTED 0 IN 2003

[ %1

WHO WERE YOV,
DeNVER(ODERT?

l
UWhAr ﬁ’z\f\? v SEER
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Note Translation

e Test: hand-written
notes to Latex code
with GPT-40

e Sargsian’s 2017
pPQCD course

* Frank had better
luck with Gemini

Lecturel2

Ru gries Wilhiv  Protown and Meut@u
E o= ZQIZX,E;/%J
{ = p” - [
F (0 = _?/Zﬁqe‘[)
ox RO = Bl

dﬁvw ﬂf(%>¢W7§ e
e 42 i

P ar LN) a s
z 1

[ 24 fav Z 4%
™ ]

l hibw -5

Lecture 12: Quarks within the Proton and
Neutron

1. Structure Functions and Cross Sections

Fs(x) = ZC? -z filx)
Fila) = 3 Y e i)
2F (z) = Fy(x)

a - Fyzx) 20 Fi(x)
dEdS 7““““( R Vi

Quark Mass Charge ¢ Spin
u 2.4 MeV % %
d 4.8 MeV - 4
S 95 MeV —% %
c 1.275 GeV z 2
b 4.18 GeV —3 p
t 172.44 GeV 2 3

. Partonic Evolution (Feynman Diagrams)

q&}rk(/ (gk q
g q i
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Conclusion

* ML methods becoming more common

* Many possible uses in research: functional approximation, classification
and generation

e Can automate much drudgery
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Tutorial

* Link to Google Colab:

https://colab.research.google.com/drive/11hflV9LgMQQC3n2tAT4 LdjOgnJF

n6847?usp=sharing

* Need to sign into Google Account to run

e Can download notebook from Indico page, but need TensorFlow
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https://colab.research.google.com/drive/11hfIV9LgMQQC3n2tAT4_Ldj0qnJFn684?usp=sharing
https://colab.research.google.com/drive/11hfIV9LgMQQC3n2tAT4_Ldj0qnJFn684?usp=sharing

Resources

Good coding practices
* The Good Research Code Handbook (online)

Neural Networks in Nuclear Physics
* Boehnlein, Amber, et al. "Colloguium: Machine learning in nuclear

physics." Reviews of Modern Physics 94.3 (2022): 031003.

Tensorflow Tutorials
e TensorFlow 2 quickstart for beginners

e Convolutional Neural Network (CNN)
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https://goodresearch.dev/
https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.94.031003
https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.94.031003
https://www.tensorflow.org/tutorials/quickstart/beginner
https://www.tensorflow.org/tutorials/images/cnn

Resources - Basics

General

* Textbook: Goodfellow, Bengio, and Courville. Deep learning. 2016.
- Available online, with lectures
- Topics listed below can be found here

Neural Networks

e But what is a neural network?|3BluelBrown (YouTube, Chapter 1 of 4 in
MIL series)

CNNs
e But what is a convolution? |3BluelBrown (YouTube)

 Stanford University: Introduction to Convolutional Neural Networks for
Visual Recognition (YouTube, whole course)
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https://www.deeplearningbook.org/
https://www.deeplearningbook.org/lecture_slides.html
https://www.youtube.com/watch?v=aircAruvnKk
https://www.youtube.com/watch?v=KuXjwB4LzSA
https://www.youtube.com/watch?v=vT1JzLTH4G4
https://www.youtube.com/watch?v=vT1JzLTH4G4

Resources — Advanced Topics

PINNs

* Raissi, Maziar, Paris Perdikaris, and George E. Karniadakis. "Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial differential
equations.”" Journal of Computational physics 378 (2019): 686-707.

NN Optimization

* Smith, Samuel L., et al. "Don't decay the learning rate, increase the batch size." arXiv preprint
arXiv:1711.00489 (2017).

Uncertainty Quantification in NNs

* Gal, Yarin, and Zoubin Ghahramani. "Dropout as a bayesian approximation: Representing model
uncertainty in deep learning." international conference on machine learning. PMLR, 2016.

Neural Operators

» Kovachki, Nikola, et al. "Neural operator: Learning maps between function spaces." arXiv preprint
arXiv:2108.08481 (2021).
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https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://arxiv.org/pdf/1711.00489.pdf
http://proceedings.mlr.press/v48/gal16.pdf
https://arxiv.org/pdf/2108.08481.pdf
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ML Action Parameters in LQCD

e Parameter estimation

PHYSICAL REVIEW D 97, 094506 (2018)

e Uses SU(2) Gauge symmetry

Machine learning action parameters in lattice quantum chromodynamics
Phiala E. Shanahan,"” Amalie Trewartha’ and William Detmold®

]fJepanmem of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795, USA
Zleﬂ'ers'wr Laboratory, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA

* Gauge links: 4 dimension oo el Pt Mkt st of Tkl
e Each as 4, therefore 16

Gauge

Links
995328
: 3
e Grid: 12° X 36
I [] Hidden Hidden
Gauge Field CopffGuration units units
96 96
T -
-1 ] 3
J» = Outputs
=] 2

e . .
> . .
® . .
e . .

N .
L]
L]
L Dropout

0.4
<
Dropout
0.3
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PHYSICAL REVIEW D 104, 016001 (2021)

Deep learning analysis of deeply virtual exclusive photoproduction

I .11 . .
d For ep % e p y ) Jake Grigsby,  Brandon Kriesten,” Joshua Hoskins®,” and Simonetta Liuti®*

Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA

Peter Alonzi®!
School of Data Science, University of Virginia, Charlottesville, Virginia 22904, USA

d 5 J Matthias Burkardt'
R ]__l T 2 New Mexico State University, Department of Physics,
2 = I}
dxg;dQ-d|t|dpdpg

Box 30001 MSC 3D, Las Cruces, New Mexico 88003, USA

k,

DVCS:

RelLU

llh=al

FC, Dropout FC, Dropout FC, Dropout

e ButT = TDVCS + TBH



FemtoNet

* Dropout - prevents
overfitting, leads to neurons
to look at independent
features, avoid correlations
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LQCD Ensemble Generation

e Potential for lattice
QCD

* Computational
methods reach
critical slowing
down

* Unlike with images,
probability
distribution known

nature reviews physics https://dol.org/10.1038/542254-023-00616-w

Perspective W Check for updates

Advances inmachine-learning-based
sampling motivated by lattice
quantum chromodynamics

Kyle Cranmer @', Gurtej Kanwar @, Sébastien Racaniére ®*, Danilo J. Rezende ®° & Phiala E. Shanahan®**

Image generation

RGB pixel variables | x3
=1,000,000 dof

Target
Subjective high quality per sample

Symmetries
Few approximate symmetries
(for example, reflection, small translations)

Quantum field generation

=10,000 samples

Lattice geometry ‘ 256 x 256 x 256 x 512

SU(3) link variables ’ x4x8

=100,000,000,000 dof
Target
Objective distribution p(U) = eSV/Z
Symmetries

High-dimensional exact symmetries
(for example, translations, gauge symmetry) 56



LQCD Ensemble Generation

* Eventually should
outpace traditional
hybrid Monte Carlo

* We want symmetries
to holds, asymptotic
guarantees

* Much work done on
simpler problems — 2D,
scalar theories, etc.

Hybrid Monte
Carlo

—

Flow-based
sampling

Cost

Training .~

“.. Thermalization

N*

Number of generated samples
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Transformer

e Uses attention mechanism

* Technology behind ChatGPT (generative
pre-trained transformer)

<
5 c
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g g 5 - I A
[} S5 N a
c
v 2 v 2 6 g v < > o c
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Transformers

Advantages:

e Can pick out complex and long-
term correlations

 Computationally efficient to train

Disadvantage:

e Usually requires a lot of data to
learn properly

]
Et Multi-Headed ‘ :
1

Self-Attention

Vv K Q

Norm

Embeddings/
Projections

i | Multi-Headed
' | Cross-Attention

Masked

I
i Multi-Headed
' Self-Attention

Embeddings/
Projections

] " "
, | "Layers
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QCD Jets with Transformers

Learning the language of QCD jets with transformers

Thorben Finke,* Michael Kramer,® Alexander Miick® and Jan Ténshoff®

* Authors use analogy:

constituents in jets < words in sentence

* Want to do Density Estimation.
 E.g, for # constituents of jets or momentum.
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Approach

Preprocess data to be more like natural language

* Order: constituents ordered by pr (greatest first) to get “grammar”

X1X7 oo Xy
* Discretize: Bin data

Other:

* Take only 50 highest pr constituents (dataset has highest 200).
e “Stop token” added if <50 constituents and padded

* Select 600k jets for training, 200k for val/test each
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Results

* Histograms

* Trained only on
50, but were
able to
accurately
predict up to
100

Normalized distribution

Normalized distribution
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Gradient Descent

o oL
T

where € is ‘learning rate’; hyperparameter

Stochastic gradient descent: use only part
of data (“batch”) for L every parameters
update.

* More computationally efficient

* Less likely to end up stuck in local
stationary point, explore more

Data

batch batch batch batch batch batch

Stochastic
gradient
descent

Gradient
descent

LB:L‘I'(LB_L)
=L +n

63



	Intro
	Slide 1:  Machine Learning Methods in High-Energy Scattering 
	Slide 2: Introduction
	Slide 3: Possible Uses
	Slide 4: Categories

	Functional Approximation
	Slide 5: Functional Approximation
	Slide 6: Feed-forward, Dense Neural Network
	Slide 7: Universal Function Approximation Theorem
	Slide 8: Training Procedure
	Slide 9: NNPDF
	Slide 10: NNPDF 4.0
	Slide 11: NNPDF 4.0 – Training Procedure
	Slide 12: NNPDF 4.0 - Results
	Slide 13: Neural Operators
	Slide 14: Neural Operators
	Slide 15: Fourier Neural Operators
	Slide 16: Scattering with NO
	Slide 17: Scattering with NO
	Slide 18: Scattering with NO

	Classification
	Slide 19: Classification
	Slide 20: Convolutional Neural Network
	Slide 21: Convolutional Neural Network
	Slide 22: Deep learning in color
	Slide 23: Data
	Slide 24: Deep learning in color
	Slide 25: DeepRich
	Slide 26: DeepRich
	Slide 27: DeepRich
	Slide 28: Boosted Decision Trees
	Slide 29: XGBoost
	Slide 30: Boosted Decision Trees
	Slide 31: Classification
	Slide 32: Generation
	Slide 33: Generation
	Slide 34: Diffusion
	Slide 35: Diffusion
	Slide 36: Diffusion
	Slide 37: Diffusion
	Slide 38: Diffusion
	Slide 39: Diffusion
	Slide 40: Chores
	Slide 41: Currents Trends
	Slide 42: Research
	Slide 43: Historical Precedent
	Slide 44: Code Commenting
	Slide 45: Other Applications
	Slide 46: Note Translation
	Slide 47: Conclusion
	Slide 48: Tutorial
	Slide 49: Resources
	Slide 50: Resources - Basics
	Slide 51: Resources – Advanced Topics
	Slide 52: Backup Slides
	Slide 53: ML Action Parameters in LQCD
	Slide 54: FemtoNet
	Slide 55: FemtoNet
	Slide 56: LQCD Ensemble Generation
	Slide 57: LQCD Ensemble Generation
	Slide 58: Transformer
	Slide 59: Transformers
	Slide 60: QCD Jets with Transformers
	Slide 61: Approach
	Slide 62: Results
	Slide 63: Gradient Descent 


