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Introduction

• Two useful reviews
Boehnlein, Amber, et al. 
"Colloquium: Machine learning in nuclear physics." 
Reviews of modern physics 94.3 (2022): 031003.
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Possible Uses

• Difficult to model/simulate, but you have lots of 
data

• Time is crucial

• Care more about predictions than understanding

NOT always the right tool for the job
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Categories

• Functional Approximation

• Classification

• Generation

• Chores
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Functional Approximation
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Feed-forward, Dense Neural Network
• Function ℝ𝑚 → ℝ𝑛 composed of more 

elementary functions:

𝑓 𝒙 = 𝐴𝑛 ∘ 𝜎 ∘ ⋯ ∘ 𝐴1 ∘ 𝜎 𝒙 ,

where:
𝐴(𝒙) = 𝑊𝒙 + 𝒃,

and 𝜎 is an ‘activation function’ (aka, non-
linear function):

• 𝜎 𝐱 = (𝜎 𝑥1 , 𝜎 𝑥2 … 𝜎 𝑥𝑚 ) 
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Universal Function Approximation Theorem
(Informal): A deep enough NN can approximate any function, 
ℝ𝑚 → ℝ𝑛

Neural Network:
𝑓(𝒙) = 𝐴𝑚 ∘  … ∘ 𝜎 ∘ 𝐴2 ∘ 𝜎 ∘ 𝐴1 𝒙

• Parameters: Weights & biases 

• Doing more functional compositions (“adding” more layers) to 
improve

Taylor Series (analogy):
𝑦 = 𝑎0 + 𝑎1𝑥 + ⋯ 𝑎𝑛𝑥𝑛

• Parameters: Coefficients

• Adding higher order terms to improve
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Training Procedure
• Learning as an optimization problem

• Gradient descent (or variation) to 
determine parameters

• Train/validation/test split

Want to minimize:
𝐿

Example:

𝐿 = 𝑀𝑆𝐸 =
1

𝑁


𝑖

𝑦𝑖 − ො𝑦𝑖
2
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Training Validation Test

Machine learns from this set
(‘lecture notes, homework’)

Used to monitor learning; 
Not just memorizing
(‘quizzes’)

Final Evaluation
(‘final exam’)



NNPDF

CJ15

• PDF sets start with parameterizes 
𝑓𝑖(𝑥, 𝑄0

2) 

Example: CJ15 for valence u/d:

• Parameterizes 𝑓𝑖(𝑥, 𝑄0
2) with NN

• NNPDF 1.0 released 2008

https://nnpdf.mi.infn.it/
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https://journals.aps.org/prd/pdf/10.1103/PhysRevD.93.114017


NNPDF 4.0
• Order: up to NNLO

• 𝑁𝑑𝑎𝑡𝑎 = 4,618

• Written in TensorFlow (past NNPDF’s 
used in-house C++ code)

• Use of GPU’s and TensorFlow sped 
fitting time by factor of  ×140

• Gradient descent optimization (vs. 
genetic algorithm in 3.1)

In addition: 𝑔

Evolution basis:
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NNPDF 4.0 – Training 
Procedure
• Single network for all PDF’s

• 763 free parameters (NNPDF 3.1: 
296)
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NNPDF 4.0 - Results
• Results 
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Neural Operators

• Often you don’t won’t to solve just 
single function

E.g,  given different initial field condition,  
want the evolution of system

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛1 → 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛2

Theorem (informal): neural networks can 
approximate an operator
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Neural Operators

• Continuous generalization of regular NN’s 
layers (basically)

𝑢𝑖+1 𝑥 = 𝜎 න𝑑𝑥′𝜅 𝑥, 𝑥′ 𝑢𝑖(𝑥′) + 𝑏(𝑥)

• Surrogate models: trained on data from 
simulations

• Often faster than numerical simulations
14

FourCastNet: A global data-driven high-resolution 
weather model arXiv: 2202.11214 

TCWV



Fourier Neural Operators
• FNO fundamental layer, choose translation invariant 𝜅(x, x′): 

𝑢𝑖+1 𝑥 = 𝜎 න𝑑𝑥′ 𝜅 𝑥 − 𝑥′ 𝑢𝑖(𝑥′) + 𝑏(𝑥)

• For integral:

න𝑑𝑥′ 𝜅 𝑥 − 𝑥′ 𝑢(𝑥′) ⇒ 

𝑖=1

𝑁

𝜅 𝑥𝑗 − 𝑥′𝑘 𝑢 𝑥𝑘
′  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥𝑗

Convolution theorem: convolution in position space becomes product in 
Fourier space

ℱ−1 ℱ 

𝑖=1

𝑁

𝜅 𝑥𝑗 − 𝑥′𝑘 𝑢 𝑥𝑘
′ =  ℱ−1 ℱ 𝜅 ℱ 𝑢

• Advantage: 𝒪 𝑁2 → 𝒪(𝑁 ln 𝑁) using FFT
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Scattering with NO
• For non-relativistic scattering:

𝑹𝒆 𝚿(𝒙𝟏, 𝒕) 𝑰𝒎 𝚿(𝒙𝟏, 𝒕) 𝑽(𝒙𝟏)

Train

Test

|Ψ(𝑥, 𝑡)|
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Scattering with NO

• Faster, less memory intense than 
standard Crank-Nicholson (CN) 
method

• Unitarity mostly obeyed
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Scattering with NO
• 2D Double Slit Experiment

|Ψ(𝒙, 𝑡)|
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Classification
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Convolutional 
Neural Network

• CNN: only non-zero 
weights around point

• Weights sharing: 
same for every point

108 → 9

• For 128 × 128 image 
𝑁~ 104 pixels

• For one dense layer, 
there are 𝑁2~ 108 
weight parameters

Input Output

Input Output 20



Convolutional Neural Network

• Build up complexity

21

Zeiler and Fergus (2014).



Deep learning in color

• Difficult to distinguish 
light quark and gluon 
jets

• Jet “images” : intensity 
at local calorimeter 
deposits
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Data

• 𝑝𝑝 at 𝑠 = 13 𝑇𝑒𝑉

• 90 k training (10% val.)

• 10k testing
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Deep learning in color
• Matches or outperforms 

traditional variables

• Insensitive to whether 
Pythia/Herwig
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DeepRich

• For deflection of internally 
reflecting Cherenkov (DIRC) 
detector at GlueX

• Full simulation slow

• Variational autoencoder (VAE) 
forces data to lower 
dimensional latent space 

• Classifier uses latent space to 
separate K & 𝜋 ′s

Latent 
Space
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Co-Inventor of VAE:
Max Welling.
Ph.D. Thesis on quantum 
gravity, advised by Gerard 
‘t Hooft



DeepRich
• Latent space

• Classification ability 
comparable to FastD

4 GeV 5 GeV

3D-visualization obtained from t-SNE
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DeepRich

• Advantage: speed. 

• Uses parallelism of GPU

• Can do 104 particles in 
∼1.4 ms
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Boosted Decision Trees

NOT a neural network or deep 
learning approach

• Group of weak learning better 
than individual

• Ensemble of decision trees 
used in astrophysics as well  
(paper: random forest instead 
of BDT)
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XGBoost
Kaggle’s Higgs Boson Challenge

Kaggle’s Higgs Boson Challenge

• Developed for Kaggle’s Higgs Boson 
Challenge

• Separate signal 𝐻 → ҧ𝜏𝜏 from 
background 

• Features: # jets, derived mass, the 
𝜂, 𝜙, 𝐸𝑇

𝑚𝑖𝑠𝑠 of various particles, etc.

• Won “ML meet HEP” Award:

“an excellent compromise between 
performance and simplicity”

Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016.

Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016.

Proceedings of the 22nd acm sigkdd international conference on knowledge discovery 
and data mining. 2016.

Proceedings of the 22nd acm sigkdd international 
conference on knowledge discovery and data mining. 
2016.

Citations: ~53,000

JMLR: Workshop and Conference 
Proceedings 42:19-55, 2015 

“Many successful solutions are
based on the XGBoost implementation of 
boosted decision trees”
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https://www.kaggle.com/c/higgs-boson
https://www.kaggle.com/c/higgs-boson
https://dl.acm.org/doi/pdf/10.1145/2939672.2939785
https://dl.acm.org/doi/pdf/10.1145/2939672.2939785
https://dl.acm.org/doi/pdf/10.1145/2939672.2939785
http://proceedings.mlr.press/v42/cowa14.pdf
http://proceedings.mlr.press/v42/cowa14.pdf


Boosted Decision Trees

Compared to deep learning methods:

• About as good for tabular data

• Faster to train

• Better interpretation

When data has locality or order (e.g. 
image or time series) not as competitive
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Classification

At > 4.9 GeV,  pions as well as 
electrons and positrons produce 
signal in High Threshold Cherenkov 
Counter at CLAS12, JLAB

• Used Boosted Decision Trees in 
electron/positron  identification

• Performed better than neural 
network

Enhancing Lepton Identification in CLAS12 using Machine 
Learning Techniques

Mariana Tenorio-Pita, ODU
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https://www.jlab.org/Hall-B/shifts/csc/slides/2024/JSAPoster2024_TenorioM.pdf-2024-06-05.
https://www.jlab.org/Hall-B/shifts/csc/slides/2024/JSAPoster2024_TenorioM.pdf-2024-06-05.


Generation

32



Generation
• We often need to generate samples

Examples:

• Monte Carlo for experimental analysis

• Lattice QCD: samples for calculations

Problem: these are often computationally expensive, need to generate many
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Diffusion

• Took ideas from non-equilibrium 
thermodynamics

• Add Noise to image

 𝒛𝑡 =  1 − 𝛽𝑡𝒛𝑡−1 + 𝛽𝑡 𝝐𝑡 1

𝝐𝑡 ∼ 𝒩(𝟎, 𝐼)

Asymptotically: 

lim
𝑡→∞

 𝒛𝑡 ∼ 𝒩 𝟎, 𝐼 

International conference on machine learning, 2015

Exercise: From Eq. (1) and assuming 𝛽𝑖 ∈ (0,1), show

𝒛𝑡 =  𝛼𝑡𝒛0 + 1 − 𝛼𝑡 𝝐𝑡 

where:

𝛼𝑡 = ෑ

𝑖=1

𝑡

1 − 𝛽𝑖

and, thus, the asymptotic limit 𝑧𝑡 → 𝒩 𝟎, 𝐼 holds. 
Also, 

𝒛𝑡−1|𝒛𝑡, 𝒛0

=
1 − 𝛼𝑡−1

1 − 𝛼𝑡
1 − 𝛽𝑡𝒛𝑡 +  

𝛽𝑡 1 − 𝛼𝑡−1

1 − 𝛼𝑡
𝝐𝑡
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http://proceedings.mlr.press/v37/sohl-dickstein15.pdf


Diffusion

• Forward process: ‘adds’ 
noise sequentially

• Train neural network to 
‘denoise’ image’, one step 
at a time. 

• Distributions analytic 
since made from  
Gaussians
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Scheinker (2024)

https://www.nature.com/articles/s41598-024-70302-z.pdf


Diffusion

• To generate image, start with 
Gaussian noise, then denoise 

• Images high dimensional,  often 
performed in “latent space” (lower 
dimensional representation of 
data)

• Can generate high quality ‘images’, 
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Diffusion
• For EIC or JLab

• “Image”:𝜙 and 𝜂 index 

• “Intensity”: related to

𝑧𝑖 =
2 𝑝𝑇,𝑖

𝑠
cos 𝜂𝑖

with massless approx. used. 



𝑖

𝑧𝑖
𝑚𝑒𝑎𝑠. ≤ 2

• Channels: 𝑃𝐼𝐷𝑖 , 
𝑒−, 𝜋+, 𝐾+
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Diffusion
• Results

• 𝑃𝑦8 → 𝑝𝑖𝑥(64): 
pixelation

38



Diffusion
• All generated events had:



𝑖

𝑧𝑖
𝑚𝑒𝑎𝑠 ≤ 2
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Chores
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Currents Trends

• A lot of open-source 
code to train on

• LLM’s have improved in 
coding

https://www.nytimes.com/2025/03/14/technology/why-
im-feeling-the-agi.html

"If you really want to grasp how much better A.I. has 

gotten recently, talk to a programmer. A year or two 

ago, A.I. coding tools existed, but were aimed more at 

speeding up human coders than at replacing them. 

Today, software engineers tell me that A.I. does 

most of the actual coding for them, and that they 

increasingly feel that their job is to supervise the 

A.I. systems. 

Powerful A.I. Is Coming. We’re Not Ready.

Jared Friedman, a partner at Y Combinator, a start-up 

accelerator, recently said a quarter of the 

accelerator’s current batch of start-ups were using 

A.I. to write nearly all their code. “A year ago, they 

would’ve built their product from scratch — but now 95 

percent of it is built by an A.I.,” he said."
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Research

“These results suggest that GPT-4 possesses 
superior programming abilities compared to 
most human programmers participating in these 
contests, yet it still falls short of surpassing the 
most elite human programmers in most 
situations.”
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Historical Precedent

• Calculators, computers 
refocused what humans do

• Human in loop is still 
required
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Code Commenting

Asked LLM 
to document

https://github.com/keras-team/keras-io/
blob/master/examples/generative/ddpm.py



Other Applications

• Translating Code

• Error handling

• Code optimization

• Improve prose writing
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Note Translation

46

• Test: hand-written 
notes to Latex code 
with GPT-4o

• Sargsian’s 2017 
pQCD course

• Frank had better 
luck with Gemini



Conclusion

• ML methods becoming more common

• Many possible uses in research: functional approximation, classification 
and generation

• Can automate much drudgery 
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Tutorial

• Link to Google Colab:

https://colab.research.google.com/drive/11hfIV9LgMQQC3n2tAT4_Ldj0qnJF
n684?usp=sharing

• Need to sign into Google Account to run

• Can download notebook from Indico page, but need TensorFlow
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https://colab.research.google.com/drive/11hfIV9LgMQQC3n2tAT4_Ldj0qnJFn684?usp=sharing
https://colab.research.google.com/drive/11hfIV9LgMQQC3n2tAT4_Ldj0qnJFn684?usp=sharing


Resources

Good coding practices

• The Good Research Code Handbook (online)

Neural Networks in Nuclear Physics

• Boehnlein, Amber, et al. "Colloquium: Machine learning in nuclear 
physics." Reviews of Modern Physics 94.3 (2022): 031003.

Tensorflow Tutorials

• TensorFlow 2 quickstart for beginners

• Convolutional Neural Network (CNN)

49

https://goodresearch.dev/
https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.94.031003
https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.94.031003
https://www.tensorflow.org/tutorials/quickstart/beginner
https://www.tensorflow.org/tutorials/images/cnn


Resources - Basics
General

• Textbook: Goodfellow, Bengio, and Courville. Deep learning. 2016.

 - Available online, with lectures

 - Topics listed below can be found here

Neural Networks

• But what is a neural network?|3Blue1Brown (YouTube, Chapter 1 of 4 in 
ML series)

CNNs

• But what is a convolution? |3Blue1Brown (YouTube)

• Stanford University: Introduction to Convolutional Neural Networks for 
Visual Recognition (YouTube, whole course)
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https://www.deeplearningbook.org/
https://www.deeplearningbook.org/lecture_slides.html
https://www.youtube.com/watch?v=aircAruvnKk
https://www.youtube.com/watch?v=KuXjwB4LzSA
https://www.youtube.com/watch?v=vT1JzLTH4G4
https://www.youtube.com/watch?v=vT1JzLTH4G4


Resources – Advanced Topics
PINNs

• Raissi, Maziar, Paris Perdikaris, and George E. Karniadakis. "Physics-informed neural networks: A deep 
learning framework for solving forward and inverse problems involving nonlinear partial differential 
equations." Journal of Computational physics 378 (2019): 686-707.

NN Optimization 

• Smith, Samuel L., et al. "Don't decay the learning rate, increase the batch size." arXiv preprint 
arXiv:1711.00489 (2017).

Uncertainty Quantification in NNs

• Gal, Yarin, and Zoubin Ghahramani. "Dropout as a bayesian approximation: Representing model 
uncertainty in deep learning." international conference on machine learning. PMLR, 2016.

Neural Operators

• Kovachki, Nikola, et al. "Neural operator: Learning maps between function spaces." arXiv preprint 
arXiv:2108.08481 (2021).
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https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://arxiv.org/pdf/1711.00489.pdf
http://proceedings.mlr.press/v48/gal16.pdf
https://arxiv.org/pdf/2108.08481.pdf


Backup Slides
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ML Action Parameters in LQCD
• Parameter estimation

• Uses SU(2) Gauge symmetry

• Gauge links: 4 dimension

• Each as 4, therefore 16

• Grid: 123 × 36
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FemtoNet
• For 𝑒𝑝 → 𝑒′𝑝′𝛾′,

• But 𝑇 = 𝑇𝐷𝑉𝐶𝑆 + 𝑇𝐵𝐻

DVCS:
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FemtoNet
• Dropout - prevents 

overfitting, leads to neurons 
to look at independent 
features, avoid correlations 
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LQCD Ensemble Generation
• Potential for lattice 

QCD

• Computational 
methods reach 
critical slowing 
down

• Unlike with images, 
probability 
distribution known
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LQCD Ensemble Generation
• Eventually should 

outpace traditional 
hybrid Monte Carlo 

• We want symmetries 
to holds, asymptotic 
guarantees

• Much work done on 
simpler problems – 2D, 
scalar theories, etc.
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Transformer
• Uses attention mechanism

• Technology behind ChatGPT (generative 
pre-trained transformer)
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Transformers

Advantages:

• Can pick out  complex and long-
term correlations

• Computationally efficient to train

Disadvantage:

• Usually requires a lot of data to 
learn properly
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QCD Jets with Transformers

• Authors use analogy:

𝒄𝒐𝒏𝒔𝒕𝒊𝒕𝒖𝒆𝒏𝒕𝒔 𝒊𝒏 𝒋𝒆𝒕𝒔 ⟺  𝒘𝒐𝒓𝒅𝒔 𝒊𝒏 𝒔𝒆𝒏𝒕𝒆𝒏𝒄𝒆 

• Want to do Density Estimation.

• E.g, for # constituents of jets or momentum.
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Approach

Preprocess data to be more like natural language

• Order: constituents ordered by 𝑝𝑇 (greatest first) to get “grammar”

𝑥1𝑥2 … 𝑥𝑛

• Discretize: Bin data

Other:

• Take only 50 highest 𝑝𝑇 constituents (dataset has highest 200).

• “Stop token” added if <50 constituents and padded

• Select 600k jets for training, 200k for val/test each
61



Results
• Histograms

• Trained only on 
50, but were 
able to 
accurately 
predict up to 
100 
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Gradient Descent 

𝜃𝑗 →  𝜃𝑗  − 𝜖
𝜕𝐿

𝜕𝜃𝑗

where 𝜖 is ‘learning rate’; hyperparameter

Gradient
descent

L

Stochastic 
gradient
descent

𝐿𝐵 = 𝐿 + 𝐿𝐵 − 𝐿
= 𝐿 + 𝜂

63batch batch batch batch batch batch

Data

Stochastic gradient descent: use only part 
of data (“batch”) for 𝐿 every parameters 
update. 

• More computationally efficient 

• Less likely to end up stuck in local 
stationary point, explore more 
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