Short-Range Nuclear Structure: **Beyond JLab Electron-Scattering**

Jackson Pybus

Directors' Fellow, Los Alamos National Laboratory

- "Light-ion physics in the EIC era"
- June 2025, Florida International University, Miami, FL

GCF analysis connect scattering data to ground-state SRC properties

Duer et al. PRL 2019 Schmidt et al. Nature 2020 Pybus et al. PLB 2020 Weiss et al. PRC 2021 Korover et al. PLB 2021

Relies on connection between electron scattering data and nuclear ground-state

Factorized cross section: $\sigma = \sigma_{e,N}(q) \times S(p_i, p_{rec})$

Ground-state interpretation requires establishing plane-wave factorization!

Example: PDF Universality

Deep-Inelastic Scattering

+ Q²-evolution from DGLAP

VS

Drell-Yan

= Universal framework for measuring parton structure of the proton

Two ways to examine reaction-dependence: Scale Probe

Q^2 , |t| change the resolution **scale**

Different **probes**: Electromagnetic (e^{-}), Hadronic (p, A), Photonuclear (γ)

Two ways to examine reaction-dependence: Scale Probe

Q^2 , |t| change the resolution **scale**

Different **probes**: Electromagnetic (e^{-}) , Hadronic (p, A), Photonuclear (γ)

BM@N/R3B

GlueX

GlueX

BM@N/R3B

48 GeV/c

n-*p* Short-Range Correlations from (p, 2p + n) Measurements

A. Tang,¹ J.W. Watson,¹ J. Aclander,² J. Alster,² G. Asryan,^{4,3} Y. Averichev,⁸ D. Barton,⁴ V. Baturin,^{6,5} N. Bukhtoyarova,^{4,5} A. Carroll,⁴ S. Gushue,⁴ S. Heppelmann,⁶ A. Leksanov,⁶ Y. Makdisi,⁴ A. Malki,² E. Minina,⁶ I. Navon,² H. Nicholson,⁷ A. Ogawa,⁶ Yu. Panebratsev,⁸ E. Piasetzky,² A. Schetkovsky,^{6,5} S. Shimanskiy,⁸ and D. $Zhalov^6$

FIG. 4 (color online). Plots of (a) p_z^{cm} and (b) p_z^{rel} for correlated *n*-*p* pairs in ¹²C, for ¹²C(p, 2p + n) events. Each event has been s-weighted, as described in the text.

High-Energy Ion Beam @ JINR Nuclotron

High-Energy Ion Beam @ JINR Nuclotron

SRC@BM@N

(a)

Patsyuk et al. Nature Physics (2021)

Fragment identification –

10 -9 -9 -8 -7 -6 -

11

Patsyuk et al. Nature Physics (2021)

(p,2p): Quasi-Free Scattering

Patsyuk et al. Nature Physics (2021)

Tagging on residual nucleus kills FSI contributions!

theory to high precision

Looking for SRCs

Selection Cuts:

- Inclusive $(p,2p) + {}^{10}B$ or ${}^{10}Be$
- $p_{miss} > 350 \text{ MeV/c}$
- $-100 < E_{miss} < 240 \, \text{MeV}$
- In-plane 2p opening angle > 63°
- $m_{miss} > 420 \,\mathrm{MeV^2/c^2}$

Only few % of relevant (*p*,2*p*) events have ¹⁰B or ¹⁰Be fragments

Patsyuk et al. Nature Physics (2021)

Missing mass consistent with a nucleon

NP-SRC dominance

- 26¹⁰B events
- 3¹⁰Be events
- → *np* pair dominance

Possible contamination:

- ¹¹B + FSI nucleon knockout? Would result in #¹⁰B ~ #¹⁰Be
- QE mean-field events with excited ¹¹B? Estimated maximum contribution 5 (¹⁰B) and 2 (¹⁰Be) events

SRC nucleons show back-to-back correlation

Patsyuk et al. Nature Physics (2021)

SRCs de-correlate from the rest of the nucleus!

Patsyuk et al. Nature Physics (2021)

CLAS12

GlueX

BM@N/R3B

Hall D SRC-CT Experiment

- Dedicated high-energy photonuclear measurement
- 10.8-GeV electron beam energytagged coherent bremsstrahlung
- ~40-day measurement of targets ²H,
 ⁴He, ¹²C
- Final-state particles detected in largeacceptance GlueX spectrometer

SRC Photoproduction in Hall D

Quasi-elastic
 photoproduction: hard
 photon-nucleon interaction

SRC Photoproduction in Hall D

- Quasi-elastic
 photoproduction: hard
 photon-nucleon interaction
- ρ^- photoproduction:
 - Initial-state neutron
 - Distinctive $\rho^- \rightarrow \pi^- \pi^0$ decay
- Measurements of $(\gamma, \rho^- p)$ and $(\gamma, \rho^- pp)$

SRC Event Selection

Signal Process: $\gamma n \rightarrow \rho^- p$

Inclusive variables:

- Momentum-transfer: $t_M = (p_{\gamma} p_M)^2$
- Invariant mass: $W_M^2 = (p_\gamma + p_N p_M)^2 \sim m_N^2$

Scaling variable: $\zeta_M \equiv \frac{m}{2m_N(E_\gamma - E_M)}$ $---\sim$

SRC Event Selection

Signal Process: $\gamma n \rightarrow \rho^- p$

Inclusive variables:

- Momentum-transfer: $t_M = (p_{\gamma} p_M)^2$
- Invariant mass: $W_M^2 = (p_\gamma + p_N p_M)^2 \sim m_N^2$

Scaling variable: $\zeta_M \equiv \frac{1}{2m_N(E_{\gamma} - E_M)}$

Pybus et al. preliminary

Background: $\gamma n \rightarrow \rho^- \pi^+ n$

Misidentify π^+ as proton

New photoproduction variables balance **PID**, resolution, and kinematic considerations to identify SRC signal

Observation of SRCs in photoproduction

SRC Center-of-Mass Motion

Pybus et al. preliminary

e⁻: PRL (2018) p: Nature Physics (2021) γ: SRC-CT (2024)

Data connect to ab-initio theory at high momentum; Distinguish realistic and unrealistic models

SRC Isospin Structure

SRC Isospin Structure

SRC Isospin Structure

Consistency with theory points to universal picture of the nuclear ground-state!

New CLAS12 data point to resolutionindependent SRC properties

p_{miss}: 550 – 700 MeV/c

p_{miss}: 700 – 850 MeV/c

New CLAS12 data point to resolutionindependent SRC properties

Denniston et al. preliminary

EIC – Measuring SRCs in a collider setting

Two-nucleon knockout will have different kinematics

5x41 GeV

Knocked-out protons all go into very forward kinematics

Good far-forward resolution and acceptance key for performing such nuclear measurements!

Hauenstein et al. PRC (2022)

EIC (e, e'pp) Kinematics

10x110 GeV

EIC energies → Robust test of resolution-dependence

Nuclear ground-state features should be independent of momentum-transfer

Hauenstein et al. PRC (2022)

DIS from the Nucleus

- **DIS scale:** tens of GeV
- Incident energies
- Energy transfers
- Invariant masses
- Nuclear scale: less than 10 MeV
- Nucleon binding energy
- Naive expectation:
- DIS off a bound nucleon = DIS off a free nucleon

The EMC Effect

Aubert et al., PLB (1983); Ashman et al., PLB (1988); Arneodo et al., PLB (1988); Allasia et al., PLB (1990); Gomez et al., PRD (1994); Seely et al., PRL (2009); Schmookler et al., Nature (2019)

The EMC Effect

Aubert et al., PLB (1983); Ashman et al., PLB (1988); Arneodo et al., PLB (1988); Allasia et al., PLB (1990); Gomez et al., PRD (1994); Seely et al., PRL (2009); Schmookler et al., Nature (2019)

The EMC Effect

Aubert et al., PLB (1983); Ashman et al., PLB (1988); Arneodo et al., PLB (1988); Allasia et al., PLB (1990); Gomez et al., PRD (1994); Seely et al., PRL (2009); Schmookler et al., Nature (2019)

Partons in bound nucleons are substantially modified!

SLAC

Gomez et al. PRD (1994) Schmookler et al. Nature (2021)

Global EMC Data

JLab

Nature (2019); RMP (2017); IJMPE (2013); PRC (2012); PRL (2011)

EMC-SRC Correlation

 $F_2^A = ZF_2^p + NF_2^n + n_{SRC}^A \left(\Delta F_2^p + \Delta F_2^n\right)$ $F_2^d = F_2^p + F_2^n + n_{SRC}^d \left(\Delta F_2^p + \Delta F_2^n\right)$

$$\frac{F_2^A}{F_2^d} = (Z - N) \frac{F_2^p}{F_2^d} + N + F_2^d$$

Schmookler et al. Nature (2021)

 $\left(\frac{n_{SRC}^{A}}{n_{SRC}^{d}}-N\right)n_{SRC}^{d}\frac{\Delta F_{2}^{p}+\Delta F_{2}^{n}}{F_{2}^{d}}$

 $F_2^A = ZF_2^p + NF_2^n + n_{SRC}^A \left(\Delta F_2^p + \Delta F_2^n\right)$ $F_2^d = F_2^p + F_2^n + n_{SRC}^d \left(\Delta F_2^p + \Delta F_2^n\right)$

$$\frac{F_2^A}{F_2^d} = (Z - N) \frac{F_2^p}{F_2^d} + N + F_2^d$$

✓ EMC

Schmookler et al. Nature (2021)

 $\left(\frac{n_{SRC}^{A}}{n_{SRC}^{d}}-N\right)n_{SRC}^{d}\frac{\Delta F_{2}^{p}+\Delta F_{2}^{n}}{F_{2}^{d}}$

Schmookler et al. Nature (2021)

 $F_2^A = ZF_2^p + NF_2^n + n_{SRC}^A \left(\Delta F_2^p + \Delta F_2^n\right)$ $F_2^d = F_2^p + F_2^n + n_{SRC}^d \left(\Delta F_2^p + \Delta F_2^n\right)$

 $\frac{F_2^A}{F_2^d} = (Z-N)\frac{F_2^p}{F_2^d} + N + \left(\frac{n_{SRC}^A}{n_{SRC}^d} - N\right)n_{SRC}^d\frac{\Delta F_2^p + \Delta F_2^n}{F_2^d}$

 $\frac{F_2^A}{F_2^d} = (Z - N) \frac{F_2^p}{F_2^d} + N +$ ✓ EMC ✓ DIS ✓ QE / Ab-Initio

Schmookler et al. Nature (2021)

 $F_2^A = ZF_2^p + NF_2^n + n_{SRC}^A (\Delta F_2^p + \Delta F_2^n)$ $= F_2^p + F_2^n + n_{SRC}^d \left(\Delta F_2^p + \Delta F_2^n \right)$

$$\left(\frac{n_{SRC}^A}{n_{SRC}^d} - N \right) n_{SRC}^d \frac{\Delta F_2^p + \Delta F_2^n}{F_2^d}$$

 $F_2^A = ZF_2^p + NF_2^n + n_{SRC}^A (\Delta F_2^p + \Delta F_2^n)$ $F_2^d = F_2^p + F_2^n + n_{SRC}^d \left(\Delta F_2^p + \Delta F_2^n \right)$

$$\frac{F_2^A}{F_2^d} = (Z - N) \frac{F_2^p}{F_2^d} + N + \left(\frac{n_{SRC}^A}{n_{SRC}^d} - N\right) n_{SRC}^d \frac{\Delta F_2^p + \Delta F_2^n}{F_2^d}$$

\$\scrimes EMC \$\scrimes DIS \$\scrimes QE / Ab-Initio Universe

Schmookler et al. Nature (2021)

SRCs experience universal modification

Schmookler et al. Nature (2021)

Denniston et al. PRL (2024)

SRC abundance from partonic data?

Theory, quasi-elastic, partonic data → consistent SRC abundances!

Denniston et al. PRL (2024)

Gluonic Probes of SRCs

Quarks in bound nucleons are known to be modified

Nature (2019); RMP (2017); IJMPE (2013); PRC (2012); PRL (2011)

Photoproduction of J/ψ can give insight to **gluons** in the bound proton

Incoherent J/ψ photoproduction near threshold sensitive to both nuclear and partonic effects

Incoherent J/ψ photoproduction near threshold sensitive to both nuclear and partonic effects

Incoherent J/ψ photoproduction near threshold sensitive to both nuclear and partonic effects

 $\frac{d\sigma(\gamma A \to J/\psi pX)}{dt d^3 p_{miss} dE_{miss}} = v_{\gamma i} \cdot \frac{d\sigma}{dt} (\gamma p \to J/\psi p) \cdot S(p_{miss}, E_{miss})$

Incoherent J/ψ photoproduction near threshold sensitive to both nuclear and partonic effects

Gravitational form factor

Invariant mass shows $J/\psi \rightarrow e^+e^-$ decay

Combined nuclear data \rightarrow Enhanced subthreshold J/ψ ?

Kinematics give insight into reaction mechanisms

Lightcone momentum fraction $\alpha_{miss} =$

Smaller-size SRC proton could enhance large- α cross section

Modified gluon radius: $\langle r \rangle_g \rightarrow (1 + Bv) \langle r \rangle_g$

Threshold J/ψ could also probe compact non-nucleonic states!

FIG. 4. The simplest diagram which reveals a hidden-color state in deuterium [18].

```
Hoyer, NPA (1997)
Brodsky et al. PLB (2001)
```


Proposed measurement of 4He can constrain mechanisms of J/ψ production from nuclei at threshold

160-day measurement of a single nucleus; ~800 J/ψ production events Measure cross section across full energy range and kinematics

Optimized radiator geometry maximizes measurement of sub-threshold production

