Short-Range Nuclear Structure: Factorization and Interpretation

Jackson Pybus

Directors' Fellow, Los Alamos National Laboratory

- "Light-ion physics in the EIC era"
- June 2025, Florida International University, Miami, FL

Recap: What we know about SRCs so far

- Short-distance, high-momentum pairs found in nuclei, 10-20% of nucleons
- 90% neutron-proton pairs at lower (300-500 MeV/c) momentum
- Abundance and center-of-mass motion increase with A

Studied using high-energy, large-momentum-transfer knockout reactions

Quantum Monte-Carlo: Another tool to study nuclei

- Provide models of nucleon-nucleon interactions:
 - Phenomenological (data-driven) models like AV18
 - Chiral effective field theory models (N2LO, N3LO)
- Given input NN interaction model, QMC methods can calculate nuclear structure up to $A \approx 12$ (closed shell nuclei up to ⁴⁰Ca)
- Position- and momentum-space distributions can be extracted to look at pairing behavior

$E_{beam} \lesssim 300 \, {\rm MeV/c}$

- NN interactions mainly measured using elastic nucleonnucleon scattering
 - Partial-wave analysis → determine strength of different components (scalar, tensor, spin-orbit, etc.) at different momentum

- NN interactions mainly measured using elastic nucleonnucleon scattering
 - Partial-wave analysis → determine strength of different components (scalar, tensor, spin-orbit, etc.) at different momentum
- High-momentum scattering → no longer elastic!

- NN interactions mainly measured using elastic nucleonnucleon scattering
 - Partial-wave analysis → determine strength of different components (scalar, tensor, spin-orbit, etc.) at different momentum
- High-momentum scattering → no longer elastic!
- Leads to large model-dependence in high-momentum, short-distance NN interactions:

Neutron star densities!

- NN interactions mainly measured using elastic nucleonnucleon scattering
 - Partial-wave analysis → determine strength of different components (scalar, tensor, spin-orbit, etc.) at different momentum
- High-momentum scattering → no longer elastic!
- Leads to large model-dependence in high-momentum, short-distance NN interactions:

7

Consequence: Large model-dependence in nuclear structure calculations

Relative **distance** for neutron-proton pairs

Cruz-Torres et al. Nature Physics (2021)

Relative **momentum** for neutron-proton pairs

A = 3 system is ideal to test theory calculations

Cruz-Torres et al. PRL (2020) Cruz-Torres et al. PLB (2019)

Light A = 3 systems allow *exact* "spectral function" and final-state rescattering calculations

Current theory can describe data up to 500 MeV/c momentum!

But what if we look at one model?

Short-distance nuclear structure scales across nuclei!

Cruz-Torres et al. Nature Physics (2021)

But what if we look at one model?

Short-distance nuclear structure scales across nuclei!

Many Body = Constant × Two Body

Cruz-Torres et al. Nature Physics (2021)

But what if we look at one model?

Short-distance nuclear structure scales across nuclei!

Separation of Scales

- $r_{rel} \ll R_A$ $k_{rel} \gg k_F$
- Distance and momentum scales are much different inside pairs than the rest of the nucleus!

Separation of Scales

- Distance and momentum scales are much different inside pairs than the rest of the nucleus!
- Strong in-pair interactions
 decouple from the rest of the nucleus
 - ➡ Universal behavior of SRC pairs across nuclei

Factorization is Scheme Independent

Different models give different short-distance behavior, but **always** universal!

Cruz-Torres et al. Nature Physics (2021)

Factorization is Scheme Independent

Different models give different short-distance behavior, but **always** universal!

Cruz-Torres et al. Nature Physics (2021)

Factorization also works in momentum

Cruz-Torres et al. Nature Physics (2021)

Momentum-scaling onset depends on Q_{CM}

Cruz-Torres et al. Nature Physics (2021)

SRC Pair Densities

$$\rho_{NN}^{A}(r, R) = C_{NN}^{A}(R) \times \left| \varphi_{NN}(r) \right|^{2}$$

$$\Rightarrow C_{NN}^{A}(R) = \int_{0}^{1 fm} d\Omega_{R} d\mathbf{r} \rho_{NN}^{A}(r, R) / \left| \varphi_{NN}(r) \right|^{2}$$

SRC pair densities are largely a function of the mean-field

Factorization is position independent

Cruz-Torres et al. Nature Physics (2021)

Scaling gives us SRC pair abundances

Cruz-Torres et al. Nature Physics (2021)

When cancelling 2-body effects – universal!

Cruz-Torres et al. Nature Physics (2021)

Normalizing to one nucleus to cancel different NN interaction effects

Scaling of SRC pairs in nuclei is driven by **mean-field physics**

Same for all NN interactions! Same for small-r and large-k!

Short-distance = high-momentum

Pair Interaction

Center-of-Mass -

Pair Interaction

Center-of-Mass -

Pair Abundance

Pair Interaction

Center-of-Mass

Pair Abundance

GCF Spectral Function Energy-momentum distribution for SRC nucleons

The Plane-Wave Impulse Approximation

- Large momentum-transfer scattering → another separation of scales!
 - Factorized cross section model allows *direct comparison* between experiment and theory

With a solid model, we can use scattering data to make quantitative connections to SRC properties

Generalized Contact Formalism $S^p(p,\epsilon) = C^p_A$ C^{l}_{A} $2C^{\mu}$

$$p_{A}^{pn,s=1} \cdot S_{pn}^{S=1}(p,\epsilon) +$$

$$p_{A}^{pn,s=0} \cdot S_{pn}^{S=0}(p,\epsilon) +$$

$$p_{A}^{pp,s=0} \cdot S_{pp}^{S=0}(p,\epsilon)$$

Generalized Contact Formalism $S^p(p,\epsilon) = C^p_A$ C^{l}_{A} $2C^p_{\Lambda}$

$$S_{ab}^{\alpha}(p_{1}, E_{1}) = \frac{1}{4\pi} \int \frac{d^{3}p_{2}}{(2\pi)^{3}} \delta \left[f(p_{2}) \right] \left| \phi_{ab}^{\alpha} \left((\vec{p}_{1} - \vec{p}_{2})/2 \right) \right|^{2} n_{ab}^{\alpha} (\vec{p}_{1} + \vec{p}_{2})$$
Relative CM

$$S_{A}^{pn,s=1} \cdot S_{pn}^{S=1}(p,\epsilon) + S_{pn}^{s=0} \cdot S_{pn}^{S=0}(p,\epsilon) + S_{pn}^{S=0}(p,\epsilon) + S_{pp}^{S=0} \cdot S_{pp}^{S=0}(p,\epsilon)$$

Each pair convolves relative and CM motion:

Each pair convolves relative and CM motion:

$$S^{\alpha}_{ab}(p_1, E_1) = \frac{1}{4\pi} \int \frac{d^3 p_2}{(2\pi)^3} \delta \left[f(p_2) \right] \left| \phi^{\alpha}_{ab} \left((\vec{p}_1 - \vec{p}_2)/2 \right) \right|^2 n^{\alpha}_{ab} (\vec{p}_1 + \vec{p}_2)$$

Generalized Contact Formalism

$$\sum_{\substack{pn,s=0\\A}}^{pn,s=1} \cdot S_{pn}^{S=1}(p,\epsilon) + \\ S_{pn}^{S=0}(p,\epsilon) + \\ S_{pp}^{S=0}(p,\epsilon) + \\ S_{pp}^{S=0}(p,\epsilon)$$

Each pair convolves relative and CM motion:

$$S_{ab}^{\alpha}(p_{1}, E_{1}) = \frac{1}{4\pi} \int \frac{d^{3}p_{2}}{(2\pi)^{3}} \delta[f(p_{2})] \left| \phi_{ab}^{\alpha} \left((\vec{p}_{1} - \vec{p}_{2})/2 \right) \right|^{2} n_{ab}^{\alpha} (\vec{p}_{1} + \vec{p}_{2})$$

Generalized Contact Formalism

$$\sum_{\substack{pn,s=0\\A}}^{pn,s=1} \cdot S_{pn}^{S=1}(p,\epsilon) + \\ S_{pn}^{S=0}(p,\epsilon) + \\ S_{pp}^{S=0}(p,\epsilon) + \\ S_{pp}^{S=0}(p,\epsilon)$$

$$S_{ab}^{\alpha}(p_1, E_1) = \frac{1}{4\pi} \int \frac{d^3 p_2}{(2\pi)^3} \delta\left[f(p_2)\right] \left| \phi_{ab}^{\alpha} \left((\vec{p}_1 - \vec{p}_2)/2\right) \right|^2 n_{ab}^{\alpha}(\vec{p}_1 + \vec{p}_2)$$

Generalized Contact Formalism

$$\sum_{\substack{pn,s=0\\A}}^{pn,s=1} \cdot S_{pn}^{S=1}(p,\epsilon) + \\ S_{pn}^{S=0}(p,\epsilon) + \\ S_{pp}^{S=0}(p,\epsilon) + \\ S_{pp}^{S=0}(p,\epsilon)$$

Each pair convolves relative and CM motion:

Generalized Contact Formalism

Compare theory to CLAS EG2 Experiment

- Jefferson Lab Hall B
- 5-GeV e⁻ beam
- C, Al, Fe, Pb
- Large-acceptance detector
- Measuring (*e*, *e'p*), (*e*, *e'pp*),
 (*e*, *e'pn*)

Missing momentum distribution connects to short-distance NN interaction

Schmidt et al. Nature (2020)

Factorized GCF model captures momentumenergy correlations

Schmidt et al. Nature (2020)

High-Momentum SRC Dominance

Schmidt et al. Nature (2020) Pybus et al. PLB (2020) Korover et al. PLB (2021) Adding recoil neutron detection gives complete picture of SRC isospin structure

High-Momentum SRC Dominance


```
Schmidt et al. Nature (2020)
Pybus et al. PLB (2020)
Korover et al. PLB (2021)
```


At least 90% of high-momentum protons have a partner

GCF analysis connect scattering data to ground-state SRC properties

Korover et al. PLB (2021)

GCF analysis connect scattering data to ground-state SRC properties

Korover et al. PLB (2021)

Up next: Establishing the connection between experimental data and the nuclear wavefunction

