Short-Range Nuclear Structure: First Experimental Results

Jackson Pybus

Directors' Fellow, Los Alamos National Laboratory

- "Light-ion physics in the EIC era"
- June 2025, Florida International University, Miami, FL

Nuclear Shell Model cannot explain the entire nucleus

Need long-range and short-range correlations to fill the gap

Short-Range Correlations

- IPSM describes $k < k_{Fermi} \approx 250 \text{ MeV}/c$ well, but missing strength
- Nuclear structure calculations show highmomentum tail $k > k_{Fermi}$
 - Dominated by two-nucleon "Short-Range Correlations" (SRCs)
- Small fraction (10-20%) of nucleons, but large impact on overall structure

Short-Range Correlations

Nucleon pairs that are very close together in the nucleus

Position-space

<u>Momentum-space</u>: Large relative and lower C.M. momentum

Momentum-space

Shell model + LRCs (Mean field)

- Hard knockout reactions large momentum-transfer to a bound nucleon in the nucleus
- For SRC pairs, partner/spectator nucleon also recoils from the nucleus
- Different channels for studying SRCs:
 - Inclusive (e, e')
 - Semi-inclusive (e, e'N)
 - Exclusive (e, e'NN)

- Hard knockout reactions large momentum-transfer to a bound nucleon in the nucleus
- For SRC pairs, partner/spectator nucleon also recoils from the nucleus
- Different channels for studying SRCs:
 - Inclusive (e, e')
 - Semi-inclusive (e, e'N)
 - Exclusive (e, e'NN)

- Hard knockout reactions large momentum-transfer to a bound nucleon in the nucleus
- For SRC pairs, partner/spectator nucleon also recoils from the nucleus
- Different channels for studying SRCs:
 - Inclusive (e, e')
 - Semi-inclusive (e, e'N)
 - Exclusive (e, e'NN)

- Hard knockout reactions large momentum-transfer to a bound nucleon in the nucleus
- For SRC pairs, partner/spectator nucleon also recoils from the nucleus
- Different channels for studying SRCs:
 - Inclusive (e, e')
 - Semi-inclusive (e, e'N)
 - **Exclusive** (e, e'NN)

Inclusive Electron Scattering

$$k^{\prime\mu} = (E_k^{\prime}, \vec{k}^{\prime})$$

$$k^{\mu} = (E_k, \vec{k})$$

$$q^{\mu} = k^{\mu}$$

Kinematic invariants:

$$p^{\mu}p_{\mu} = M^{2}$$

$$Q^{2} = -q^{\mu}q_{\mu} = |\vec{q}|^{2} - \omega^{2}$$

$$p_{\mu}q^{\mu} = M\omega$$
$$V^{2} = p'^{\mu}p'_{\mu} = (q^{\mu} + p^{\mu})$$

(e, e') Energy Spectrum

Generic electron scattering at fixed momentum-transfer

The energy deposited by the electron can tell us about the underlying process we're measuring

(e, e') Energy Spectrum

Generic electron scattering at fixed momentum-transfer

The energy deposited by the electron can tell us about the underlying process we're measuring

"Quasielastic" scattering occurs at $\frac{Q^2}{2m\omega} \equiv x_B \sim 1$

 Neglecting off-shell effects, we can use conservation of 4-momentum:

$$p_i + q = p_f$$

$$(p_i + q)^2 = p_i^2 + 2p_i \cdot q + q^2 = p_f^2$$

$$Q^2 = 2p_i \cdot q = 2E_i\omega - 2\vec{p}_i \cdot \vec{q}$$

$$x_B = \frac{Q^2}{2m_N\omega} = \frac{2E_i\omega - 2\vec{p}_i \cdot \vec{q}}{2m_N\omega}$$

• If we assume Q^2 is large and $|\vec{p}_i|$ is small,

$$x_B \approx 1 - \frac{\vec{p}_i \cdot \hat{q}}{m_N}$$

Inclusive (e, e') Scattering

Inclusive (e, e') cross section at different kinematics are sensitive the nuclear momentum distribution

Minimum momentum for the struck nucleon is set by x_B

Inclusive (e, e') Scattering

- Measuring (e, e') cross section as function of x_B tells us about the nuclear momentum distribution n(k) at least in one dimension
- **Ratios** between nuclear cross sections can let us compare nuclear momentum distributions
- Areas where the ratio is constant represent **scaling**, where the cross section depends only on x_B and not on A
 - Scaling -> Universal behavior

Inclusive (e, e') Scattering

- Measured σ_A/σ_d cross section for (e, e'), sensitive to $n_A(k)/n_d(k)$
- Scaling observed for $x_B > 1.5$ above "Fermi momentum" where shell-model dominates
- Scaling down to A = 2 deuteron suggests
 universal two-nucleon pairing behavior

$$a_2(A) = \frac{n_A(k > k_F)}{n_d(k > k_F)} \sim \text{# Nucleon pairs}$$

Day et al, PRL (1987) Frankfurt et al, PRC (1993) Egiyan et al, PRL (2006) Fomin et al, PRL (2012) Schmookler et al, Nature (2019)

А	a _{2N} (A/d)
³ Не	2.08±0.01
⁴ He	3.47±0.02
Ве	4.03±0.04
С	4.95±0.05
Cu	5.48±0.05
Au	5.43±0.06

Measure of SRC relative to deuteron comes from a_2

А	a _{2N} (A/d)
³ Не	2.08±0.01
⁴ He	3.47±0.02
Ве	4.03±0.04
С	4.95±0.05
Cu	5.48±0.05
Au	5.43±0.06

Measure of SRC relative to deuteron comes from a_2

А	a _{2N} (A/d)
³ He	2.08±0.01
⁴ He	3.47±0.02
Ве	4.03±0.04
С	4.95±0.05
Cu	5.48±0.05
Au	5.43±0.06

Measure of SRC relative to deuteron comes from a_2

А	a _{2N} (A/d)
³ He	2.08±0.01
⁴ He	3.47±0.02
Ве	4.03±0.04
С	4.95±0.05
Cu	5.48±0.05
Au	5.43±0.06

Measure of SRC relative to deuteron comes from a_2

Carbon: $P_{2N}(^{12}C) \approx 5 \cdot 4\% = 20\%$ SRC

Semi-inclusive (e, e'p)

Detecting knocked-out nucleon – **reconstruct** initial-state nucleon:

 $p_i \approx p_{miss} = p_N - q$

High-Momentum SRC Dominance

Semi-inclusive (e, e'p) data extends inclusive large- $x_R A/d$ scaling **Everything** above $p_{miss} \sim 250$ MeV/c looks like a deuteron

- Breakup the pair
- Detect **both** nucleons
- Reconstruct initial-state pair
- Allows direct measurement of center-ofmass and relative momentum
- Gives access to full isospin information of the pair

Two-Nucleon Knockout

SRC

Reaction Mechanisms!

Reaction Mechanisms!

Egiyan et al, PRL (2007)

FIG. 1: Color online. The recoil neutron momentum distribution for (a) $Q^2 = 2 \pm 0.25 \text{ GeV}^2$ and (b) $Q^2 = 3 \pm 0.5 \text{ GeV}^2$. Dashed, dash-dotted and solid curves are calculations with the Paris potential for PWIA, PWIA+FSI and PWIA+FSI+MEC+N Δ , respectively. Dotted (red) curves are calculations with the AV18 potential.

Reaction Mechanisms!

FIG. 1: Color online. The recoil neutron momentum distribution for (a) $Q^2 = 2 \pm 0.25 \text{ GeV}^2$ and (b) $Q^2 = 3 \pm 0.5 \text{ GeV}^2$. Dashed, dash-dotted and solid curves are calculations with the Paris potential for PWIA, PWIA+FSI and PWIA+FSI+MEC+N Δ , respectively. Dotted (red) curves are calculations with the AV18 potential.

Suppressing competing reaction effects

Frankfurt, Sargsian, and Strikman PRC 1997 Colle, Cosyn, and Ryckebusch, PRC 2016

MEC suppressed @ high-Q² IC suppressed at x_B > 1

Suppressing competing reaction effects

Frankfurt, Sargsian, and Strikman PRC 1997 Colle, Cosyn, and Ryckebusch, PRC 2016 MEC suppressed @ high-Q² IC suppressed at x_B > 1

FSI suppressed in **anti-parallel** kinematics. Treated using **Glauber** approximation

Jefferson Lab Hall A

Hall A: A(e, e'pN)

Hall A: A(e, e'pN)

•
$$E_{beam} = 4.6 \text{ GeV}$$

•
$$Q^2 \sim 2 \,\mathrm{GeV}^2$$

•
$$x_B \sim 1.2$$

- $300 < p_{miss} < 800 \text{ MeV/c}$
- Detect knocked-out proton, look for partner nucleon

(e, e'pp) – First direct observation of SRC knockout in electron-scattering

- Reconstruct struck proton, measure recoiling partner
- Protons in pair have high "back-to-back" momentum in **opposite directions**
- High momentum comes from strong, shortdistance interactions **within** the pair

(*e*, *e'pp*) vs. (*e*, *e'pn*): What kind of pairs do we see?

- BigBite and HAND measure the recoil nucleon isospin
- We find about $10 \times as$ many recoil neutrons for a leading proton!
- Neutron-proton pairs dominate at $300 < p_i < 600 \text{ MeV/c}$

Missing Momentum [GeV/c]

Jefferson Lab Hall B ELECTRON INCIDENT ELECTRON TARGET NUCLEUS NEUTRON DRIFT CHAMBERS PROTON **CHERENKOV COUNTER** TIME OF FLIGHT ELECTROMAGNETIC CALORIMETER

CLAS6 data-mining

- Large-acceptance detector with electron, proton and neutron detection
- Existing nuclear-target data to analyze

NP-dominance across nuclei

- Used $\sigma_A(e, e'pp)/\sigma_A(e, e'p)$ ratio to estimate pp fraction
 - Assume all high- p_{miss} nucleons have a correlated partner
- NP-SRC pair dominance holds across nuclei, even in highly asymmetric systems

Fe	Pb
	68% C.L.
	□ 95% C.L.

50	100 A

Direct measurement with (*e*, *e'pp*)/(*e*, *e'np*)

- Direct observation using (*e*, *e'pp*) and (*e*, *e'np*) across nuclei
- NP-SRC pairs dominate in all nuclei by more than an order of magnitude
- This is the product of short-distance nuclear interactions that drive SRCs

Proton-Proton Pairs:

Neutron-Proton Pairs:

Neutron-Neutron Pairs:

How can we build 2N-SRCs?

Proton-Proton Pairs:

Neutron-Proton Pairs:

Neutron-Neutron Pairs:

S = 0

How can we build 2N-SRCs?

 $3 \times 2 = 6$ types of pairs?

Proton-Proton Pairs:

Neutron-Proton Pairs:

Neutron-Neutron Pairs:

S = 0

How can we build 2N-SRCs?

 $3 \times 2 = 6$ types of pairs?

Pauli disagrees!

Only neutron-proton can have aligned spin S = 1

S = 1

Nucleons prefer S=1 pairing

Carlson et al., RMP 87 (2015) 1067

Ciofi and Alvioli, Gent workshop, Aug. 2007 Sargsian, Abrahamyan, Strikman, Frankfurt, PRC (2005).

- At $p_{rel} = 300 500$ MeV/c, the s-wave momentum distribution has a minimum (node)
- Filled in by **tensor correlations** when S = 1:

$$V_{NN}(r) = V_c(r) + V_T(r)S_{12}$$
$$S_{12} = 3(\sigma_1 \cdot \hat{r})(\sigma_2 \cdot \hat{r}) - \sigma_1 \cdot \sigma_2$$

• Think about the deuteron -np, S = 1 is bound, while pp and nn are not!

But this is not constant!

- Higher missing momentum moves us away from the S=0 node at $p_{rel} \approx 400$ MeV/c

Korover et al, PRL (2014) Schmidt et al, Nature (2020)

• Tensor force does not dominate everywhere -pp-pair fraction increases with momentum • We will see this relates to changing structure of nucleon-nucleon force at shorter distances

How does the nuclear medium affect SRC behavior?

- - More nucleons together \rightarrow greater chance of pairing up
- How else does SRC formation impact their behavior?

• We know from a_2 that SRC **abundances** differ across nuclei, increasing with A

Exclusive (*e*, *e'pp*) let us reconstruct pair center-of-mass motion

Cohen, PRL (2018)

Components of CM momentum transverse to p_{miss}

→ Minimizes impact of final-state rescattering

Cohen, PRL (2018)

Extract CM across different nuclei

Pb

A

- Larger nuclei \rightarrow pairs are moving more within
- Higher average momentum of pairing nucleons → higher total momentum of pairs

 Nucleon pairing into SRCs is a mean-field phenomenon!

Which nucleons pair together?

We know that NP-SRC dominance holds even for heavy nuclei

Hen et al, Science (2014) Duer et al, Nature (2018) As we add neutrons: Larger neutron fraction in mean-field SRCs remain $N \approx Z!$

In N > Z, Protons correlate, Neutrons saturate

Does shell structure impact nucleon pairing?

⁴⁰Ca

N=28

⁴⁸Ca

⁴⁸Ca

⁴⁰Ca, ⁴⁸Ca, ⁵⁴Fe can teach us about pairing mechanisms

Number of neutrons

⁴⁰Ca, ⁴⁸Ca, ⁵⁴Fe can teach us about pairing mechanisms

New Hall C data: CaFe (e, e'p)

⁴⁰Ca, ⁴⁸Ca, ⁵⁴Fe can teach us about pairing mechanisms

New Hall C data: CaFe (e, e'p)

Nucleons pair within their shells

New Hall C data: CaFe (e, e'p)

