
From nuclear structure to high-energy processes
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High-energy scattering on nuclei

How to justify/implement a composite  
description in terms of nucleons?
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How to separate/combine structure of 
nucleus and nucleon?

How to account for nuclear interactions - 
non-nucleonic DoF?

 Relativity→

 Light-front methods→

https://indico.jlab.org/event/935/
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Basic considerations

Quantum mechanics and relativity

High-energy scattering on nuclei

Essential techniques

Non-covariant representation of interactions

Light-front form of relativistic dynamics

High-energy scattering on nuclei

Energy nonconservation in intermediate states

Need for light-front form

Separating nucleus and nucleon structure

Challenges of composite description

Light-front nuclear structrure

Dynamical equation

Rotationally symmetric representation 
in 2-body sector (k-vector)

Deuteron and nonrelativistic approximation

Spin degrees of freedom

Current operators, good/bad components

Deep-inelastic scattering on nuclei

DIS on deuteron, tagged and inclusive

Structure functions

A > 2 nuclei



3Basics: High-energy scattering on nuclei

Scattering processes with energy/momentum transfer 1 GeV: 
Various probes, final states

ν, Q ≫

Low-energy structure and processes

High-energy processes

Nucleus described in nucleon DoF: Motion, interactions

Other hadrons ( vectors, , …) “integrated out”   interactionsπ, Δ → NN

Current operators describe low-energy processes few 10 MeVQ ∼ k𝖻𝗂𝗇𝖽 ∼

How to obtain composite description in terms of nucleons? 
Use nucleon-level process as input, combine with nuclear structure?

Nucleon motion?

Nucleon interactions? Non-nucleonic DoF?

This lecture: Use hadronic picture. Consider general high-energy process and focus on combining  
nuclear and nucleon structure. Connection with QCD (factorization, partonic structure) later.

ν, Q



4Basics: Quantum mechanics and relativity

Quantum mechanics Relativity×

Superposition of configurations, 
wave function

Transitions to intermediate states
lifetime Δt ∼ 1/ΔE

Scattering kinematics

Boost invariance, 
light-front form of dynamics

Hadron creation/annihilation 
in intermediate states…

…

Consequential application of these concepts can lead to surprising conclusions

You know the basic concepts, but may not have seen them applied in this combination

Most/all conclusions can be understood and communicated in simple form



5Basics: Nuclear motion

Naive expectation: Motion of nucleons in nucleus with momenta ~ few 10 MeV 
has little effect on high-energy scattering processes at  1 GeV≫

Simple example shows that this is not so!

Example: Nucleon momentum distribution in fast-moving deuteron nucleus

+100 MeV

-100 MeV

boost ?

?

Deuteron moving with 200 GeVED =

rest frame moving

Consider nucleon configuration with z-momentum  100 MeV in rest framep1,2 = ±
What are the nucleon momenta in the moving deuteron?



6Basics: Nuclear motion
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Deuteron: (ED)𝗆𝗈𝗏𝗂𝗇𝗀
=
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(ED)𝗋𝖾𝗌𝗍

=
1
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1 − v2 =
(ED)𝗆𝗈𝗏𝗂𝗇𝗀

MD
=

200 GeV
2 GeV

= 100
v

1 − v2
≈

1

1 − v2 (v ≈ 1)

Applies to deuteron as a whole 
and to individual nucleons

Nucleon 1, 2: (E1,2)𝗋𝖾𝗌𝗍
≈ 1 GeV (p1,2)𝗋𝖾𝗌𝗍

= ± 0.1 GeV

(p1,2)𝗆𝗈𝗏𝗂𝗇𝗀
= 100 × (1 GeV ± 0.1 GeV) =

110 GeV

90 GeV{ Large momentum difference!

Exercise: Perform boost of nucleon configuration in deuteron



7Basics: Nuclear motion

+100 MeV

-100 MeV

boost 110 GeV

90 GeV

Internal motion of nucleons with  few 10 MeV momenta has large effect on 
momentum distribution in nucleus moving with  1 GeV momentum

∼
≫

 large effect on high-energy scattering processes on nucleus (in any reference frame)→

Need boost-invariant description of structure of fast-moving nucleus: Light-front wave function

Boost conserves nucleon light-cone momentum fractions

   =   invariant
(E + pz)1,2

(E + pz)D



8Basics: Nuclear interactions

Naive expectation: Interactions of nucleons in nucleus 
have little effect on high-energy scattering processes at  1 GeV≫

Simple arguments show that this is not necessarily so!

+ ...+

Nucleon interactions involve intermediate states 
with additional hadrons: Mesons ( ,…), 
baryon resonances ( , …), high-mass states

π, σ, vector
Δ

In low-energy structure and reactions ,  
the high-mass intermediate states can be “integrated out”: EFT approach

q ∼ k𝖻𝗂𝗇𝖽

High-energy reactions  can sample intermediate states up to the scale : 
Cannot a priori assume that they are suppressed!

ω ≫ M𝗁𝖺𝖽𝗋𝗈𝗇 ω

“Wave function” in relativistic context: Particle number not fixed, depends on scale of probe

Need to organize dynamics such that truncation of nuclear structure to nucleon constituents 
becomes possible, and non-nucleonic DoF can be accounted for as corrections

Possible in light-front form of dynamics (  will be seen later)→



9Essential techniques

Interactions: Non-covariant representation

Form of relativistic dynamics: Instant form → light-front form



10Interactions: Non-covariant representation

In describing high-energy scattering on nuclei we use the non-covariant representation of 
interactions: Wave function, configurations, intermediate states…

Here: Introduce/review basics using example from low-energy interactions

⟨N(p′ 2)N(p′ 1) | ̂T |N(p2)N(p1)⟩ NN scattering amplitude at nuclear energies

S-matrix element, gives differential cross section

p′ 2 + p′ 1 = p2 + p1 4-momentum conservation

p′ 2 + p′ 1 = p2 + p1

E′ 2 + E′ 1 = E2 + E1

Implies 3-momentum and energy conservation

Transition between asymptotic states

Consider transition through 1-pion exchange interaction. Apply non-covariant perturbation theory: 

→ Lectures Pastore, Gnech

Ĥ = Ĥ0 + Ĥ𝗂𝗇𝗍 ̂T = Ĥ𝗂𝗇𝗍 + Ĥ𝗂𝗇𝗍
1

E − Ĥ0
H𝗂𝗇𝗍 + . . .



11Interactions: Non-covariant representation

Interactions cause transition to intermediate states

⟨N′ 2 | Ĥ𝗂𝗇𝗍 |πN2⟩⟨πN′ 1 | Ĥ𝗂𝗇𝗍 |N1⟩
(Eπ + E′ 1 + E2) − (E1 + E2)

+⟨N′ 2N′ 1 | ̂T |N2N1⟩ =

⟨N′ 1 | Ĥ𝗂𝗇𝗍 |πN1⟩⟨πN′ 2 | Ĥ𝗂𝗇𝗍 |N2⟩
(Eπ + E′ 2 + E1) − (E1 + E2)

Interactions conserve 3-momentum: ∑ p (interm) = ∑ p (initial) = ∑ p (final)

All particles are on their mass shell, 
also in intermediate states:

,p2
1,2 = m2 ,E1,2 = |p1,2 |2 + m2 ,p2

π = M2
π Eπ = |pπ |2 + M2

π

Energy not conserved in intermediate states: ∑ E (interm) ≠ ∑ E (initial) = ∑ E (final)

Transition amplitude  energy denominator  ∝ 1/ΔE

1’1

2’2

1’1

2’2



12Interactions: Non-covariant representation

Particles always on mass shell, even in intermediate states

Reasons for use

3-momentum always conserved, even in intermediate states

Energy not conserved in intermediate states, only between asymptotic states

 4-momentum not conserved in intermediate states!→

Properties of non-covariant representation

Intermediate states with well-defined particle content - configurations, constituents

Concept of wave function defined in non-covariant representation

⟨N1, N2, . . . NN |A⟩
N

∑
i

pi = pA

N

∑
i

Ei ≠ EA

Interpretation of processes as transitions

Appropriate for high-energy scattering on composite systems



13Interactions: Covariant representation

Interactions conserve 4-momentum

couplings
p2

π − M2
π

⟨N′ 2N′ 1 | ̂T |N2N1⟩ =

1’1

2’2
pπ = p1 − p′ 1 = p′ 2 − p2 pion 4-momentum

(Feynman diagram)

Intermediate particles are off mass shell: p2
π ≠ M2

π (“virtual particles”)

Used in point-particle field theories (QCD, EFTs): Off-shell behavior of Green functions well-defined

Equivalence of non-covariant and covariant representations can be demonstrated in simple field theories

Some uses with composite systems are possible, but require additional considerations



14Relativistic dynamics: Forms

In treatment of high-energy scattering on nuclei we use  
the non-covariant representation of interactions

Depends on choice of time  energy and coordinate  momentum variables↔ ↔

Introduce/review forms of relativistic dynamics: Instant form, light-front form



15Relativistic dynamics: Instant form

4-dim spacetime

usual choice of variables

States of system defined at fixed x0

x3

x0

states
evolution

xμ = (x0, x1, x2, x3)

x0 = t time, x ≡ (x1, x2, x3) space

Evolution in time  described by hamiltonian x0 P0

Translational invariance in 3-coordinate  ensures conservation of 3-momentum x P



16Relativistic dynamics: Instant form

Free particle

pμ = (E, p) p2 = pμpμ = E2 − |p |2 = m2 E = + |p |2 + m2 Energy-momentum 
relation

|p⟩ Particle states labeled by 3-momentum.  
Sometimes write , but independent variable is always 3-momentum|p⟩

⟨p′ |p⟩ = 2p0(2π)3δ(3)(p′ − p) Normalization of states 
Factor  included for relativistic covariancep0

∫ dΓp ≡ ∫
d4p

(2π)4
2πδ(p2 − m2) θ(p0) = ∫

d3p
(2π)32E(p)

Invariant phase space element



17Relativistic dynamics: Instant form

Bound state

⟨N(p1)N(p2) . . N(pA) |A(P)⟩ = 2EA (2π)3δ(3)(
A

∑
i

pi − P) Ψ({pi} |P) Expand state in products 
of free-particle states

2EA ∫ dΓ1 . . ∫ dΓA (2π)3δ(3)(
A

∑
i

pi − P) Ψ*({pi} |P) Ψ({pi} |P) = 1 Normalization  
of wave function

⟨A(P′ ) |A(P)⟩ = 2EA (2π)3δ(3)(P′ − P) Normalization of state (CM motion)

Useful to review: Concepts and formulas can be extended to light-front quantization

Wave function describes expansion of bound state in free-particle states

Here: Deal with wave function as abstract object, independent of dynamical equation. 
Wave functions for specific interactions can be obtained as solution of dynamical equation.

Spin/isospin quantum numbers: Later



18Relativistic dynamics: Light-front form

0x+ = x0 + x3 =

x3

x0

states

evolution

Define states of system at light-front time x+ = 0

x+x−

a± ≡ a0 ± a3 light-cone components of 4-vector aμaT ≡ (a1, a2)

ab =
a+b− + a−b+

2
− aT ⋅ bT scalar product and squarea2 = a+a− − |aT |2

Light-cone components 

Light-front form of dynamics

hypersurface tangential  
to light-cone (3D plane)

Wave front of light wave traveling in -3 direction 
(= surface of constant phase)

Evolution in  described by hamiltonian x+ P−



19Relativistic dynamics: Light-front form

Light-front dynamics has many interesting formal properties: Representation of Poincare group, 
constrained dynamics, …

Here: Interested in applications to high-energy scattering on nuclei processes. 
Take practical attitude. Start with basic features, learn about other features as needed

Boosts in light-front form

p+ → eηp+ Longitudinal boost (3-direction)

p− → e−ηp−

 rapidity = hyperbolic angle,    η v = tanh η
Light-cone components diagonalize boost, transform multiplicatively

α =
p+

p+
𝗋𝖾𝖿

Light-cone fractions boost-invariant

Simple technique for performing boosts of kinematic variables:  
Compute fraction  in “old” frame, take  in “new” frame, obtain  in new frameα p+

𝗋𝖾𝖿 p+

Boost-invariant momentum variables for wave functions: Light-front wave functions   following→

Exercise: Perform boost of nucleon configuration in deuteron using light-front variables



20Relativistic dynamics: Light-front form

Free particle

p+, pT

energy  fixed by 
mass shell condition

p−

momentum p− energy

p2 = p+p− − |pT |2 = m2 p− =
m2 + |pT |2

p+

p+ > 0 for physical particle because p+ = p0 + p3 = m2 + |pT |2 + (p3)2 + p3 > 0

p− > 0 regardless of sign of p3

|p+, pT⟩ free particle state

⟨p′ 
+, p′ T |p+, pT⟩ = 2p+(2π)3δ(p′ 

+ − p+) δ(2)(p′ T − pT) normalization of states

∫ dΓp = ∫
∞

0

dp+

(2π) 2p+ ∫
d2pT

(2π)2 invariant phase space element



21Relativistic dynamics: Light-front form

Bound state

⟨N(p+
1 , p1T) . . N(p+

A , pAT) |A(P)⟩ = (2π)3 2P+ δ(
A

∑
i

p+
i − P+) δ(2)(

A

∑
i

piT − PT) Ψ({p+
i , piT} |P)

Nucleon light-cone momenta satisfy ,
A

∑
i

p+
i = P+

A

∑
i

piT = PT

Boost invariance (longitudinal): Wave function depends only on light-cone fractions 

αi ≡
Ap+

i

P+
A

(i = 1,..,A)
A

∑
i=1

αi = A

Ψ ≡ Ψ({αi, piT} |PT) independent of P+

In many applications we can use nucleus rest frame  PT = 0



22Relativistic dynamics: Light-front form

Deuteron

Two nucleons: 1,2  or  p, n

Ψ(α1, p1T |PT)

,α1 + α2 = 2 p1T + p2T = PT

Wave function effectively depends on variables of one nucleon:

∫
dα1

α1(2 − α1) ∫
d2p1T

(2π)2
Ψ*(α1, p1T |PT)Ψ(α1, p1T |PT) = 1Normalization:

Spin/isospin quantum numbers, dynamical equation, connection with non-relativistic WF: Later

Spin degrees of freedom

Light-front helicity states: Later → Lecture Cosyn



23High-energy scattering on nuclei

Study scattering processes at multi-GeV energy/momentum transfers

Exhibit effect of energy non-conservation in intermediate states 
of scattering amplitude

Compare equal-time and light-front form of dynamics

Arguments based on: Frankfurt, Strikman, Phys. Rept. 76, 215 (1981) [INSPIRE]

https://inspirehep.net/literature/171795


24High-energy scattering: Example

High-energy electron-deuteron quasi-elastic scattering

e(k) + D(pD) → e′ (k′ ) + N′ (p′ N) + S′ (p′ S)

 active nucleon,  spectator nucleonN S

k k′ 

p′ S

pD

k + pD = k′ + p′ N + p′ S 4-momentum conserved in overall process (asymptotic states)

pN p′ N

Active nucleon momentum  in intermediate state determined by rules of noncovariant interactionspN

 matrix element preserves 3-momentum (wave function)D → N + S

 mass shell condition fixes nucleon energyp2
N = m2

pN ≠ pD − pS pN ≠ k − k′ + p′ N↷

k + pN ≠ k′ + p′ N 4-momentum not conserved in electron-nucleon subprocess



25High-energy scattering: eN subprocess

Quantify effect of 4-momentum non-conservation 
in electron-nucleon subprocessseN s′ eN

seN = (k + pN)2

s′ eN = (k′ + p′ N)2

Invariant energy before 
and after  interactioneN

s′ eN = (k′ + p′ N)2 = (k + pD − pS)2

k k′ 

p′ S

pD

pN p′ N

using external 4-momentum conservation

Compute difference of subprocess invariant energies

s′ eN − seN = (k + pD − pS)2 − (k + pN)2

= 2k ⋅ (pD − pS − pN) + (pD − pS)2 − p2
N}

involves projectile 
4-momentum , large!k

}

related to deuteron 
binding energy, small



26High-energy scattering: Equal-time dynamics

non-conservation in 0-component (conventional energy)

Equal-time dynamics

(pD − pS − pN)0 ≠ 0

Use deuteron rest frame: ,pD = (MD, 0) k = (ω, − ωe3) initial electron in -3 direction
energy 1 GeV (or )ω ≳ ≫

p0
D = MD p0

S ≈ m +
|pS |2

2m
p0

N ≈ m +
|pN |2

2m
pN = − pS

few 100 MeV|pS,N | ∼

s′ eN − seN = 2k0(pD − pS − pN)0

(pD − pS − pN)0 =
|pS |2

m
+ (MD − 2m)

≈ 2ω
|p2

S |
m

grows with incident energy!

Electron-nucleon subprocess amplitude far “off energy shell” in limit of high-energy scattering

Cannot be connected with “on energy shell” amplitude measured in free eN scattering

No composite picture of high-energy scattering

=  kinetic + binding energy



27High-energy scattering: Light-front dynamics

non-conservation in minus component (LF energy)(pD − pS − pN)− ≠ 0

s′ eN − seN = 2k ⋅ (pD − pS − pN)

Energy offshellness of eN subprocess amplitude remains finite in high-energy limit

Subprocess amplitude can be connected with “on energy shell” amplitude measured in eN scattering

Composite picture of high-energy scattering: Compute nuclear high-energy scattering amplitude 
from on-shell nucleon amplitudes and nuclear structure

k+ = 0 k− = 2ω large light-front components of projectile 4-momentum

= k+ ⋅ (pD − pS − pN)− + k− ⋅ (pD − pS − pN)+} }
0 0

 = 0 + terms independent 
of energy ω

Use of light-front dynamics removes the term   in  ∝ ω s′ eN − seN

Use again deuteron rest frame



28High-energy scattering: Light-front dynamics

Light-front dynamics “aligns” the time/energy axis for nuclear dynamics with the direction of the 
high-energy process, in such a way that the energy nonconservation in intermediate states does 
not produce large effects

Light-front dynamics is the only scheme that avoids “large” energy offshellness in the nucleon 
subprocess amplitude and permits a composite description of high-energy scattering. 
Its use is necessary, not optional, for a composite description.

Energy nonconservation in intermediate states is a necessary consequence of interactions and 
nuclear binding (→ wave function). Its manifestations in high energy scattering are physical 
effects, not technical artifacts.

Electroproduction and deep-inelastic scattering: Light-front direction usually aligned  
with momentum transfer 4-vector . Conclusions re light-front dynamics remain the same 
as in example here.

q

In low-energy processes, there is no need to use light-front dynamics



29High-energy scattering: Analogue

Teeing up a golf ball

Other quantization schemes

Light-front quantization

Golf club = high energy process
Golf ball = nucleon
Tee = low-energy nuclear structure

Low-energy structure produces effects  
of the order of the high collision energy

Low-energy structure aligned with 
direction of high-energy process

Clean separation of scales

Low-energy structure not aligned with 
direction of high-energy process



Supplemental material


