From nuclear structure to high-energy processes

C. Weiss (JLab), Summer School "Light ion physics in the EIC era", Florida International University, 19-27 June 2025 [Webpage]

High-energy scattering on nuclei

How to justify/implement a composite description in terms of nucleons?

How to separate/combine structure of nucleus and nucleon?

How to account for nuclear interactions - non-nucleonic DoF?

- \rightarrow Relativity
- \rightarrow Light-front methods

Outline

Basic considerations

High-energy scattering on nuclei Challenges of composite description Quantum mechanics and relativity

Essential techniques

Non-covariant representation of interactions

Light-front form of relativistic dynamics

High-energy scattering on nuclei

Energy nonconservation in intermediate states

Need for light-front form

Separating nucleus and nucleon structure

Light-front nuclear structrure

Dynamical equation

Rotationally symmetric representation in 2-body sector (k-vector)

Deuteron and nonrelativistic approximation

Spin degrees of freedom

Current operators, good/bad components

Deep-inelastic scattering on nuclei

DIS on deuteron, tagged and inclusive

Structure functions

A > 2 nuclei

Basics: High-energy scattering on nuclei

Low-energy structure and processes

Nucleus described in nucleon DoF: Motion, interactions

Other hadrons (π , vectors, Δ , ...) "integrated out" $\rightarrow NN$ interactions

Current operators describe low-energy processes $Q \sim k_{bind} \sim$ few 10 MeV

High-energy processes

Scattering processes with energy/momentum transfer $\nu, Q \gg$ 1 GeV: Various probes, final states

How to obtain composite description in terms of nucleons? Use nucleon-level process as input, combine with nuclear structure?

Nucleon motion?

Nucleon interactions? Non-nucleonic DoF?

This lecture: Use hadronic picture. Consider general high-energy process and focus on combining nuclear and nucleon structure. Connection with QCD (factorization, partonic structure) later.

Basics: Quantum mechanics and relativity

Quantum mechanics \times Relativity

Superposition of configurations, wave function

Transitions to intermediate states lifetime $\Delta t \sim 1/\Delta E$

:

Scattering kinematics

Boost invariance, light-front form of dynamics

Hadron creation/annihilation in intermediate states

Consequential application of these concepts can lead to surprising conclusions

You know the basic concepts, but may not have seen them applied in this combination

Most/all conclusions can be understood and communicated in simple form

Basics: Nuclear motion

Naive expectation: Motion of nucleons in nucleus with momenta ~ few 10 MeV has little effect on high-energy scattering processes at \gg 1 GeV

Simple example shows that this is not so!

Example: Nucleon momentum distribution in fast-moving deuteron nucleus

Deuteron moving with $E_D = 200 \text{ GeV}$ Consider nucleon configuration with z-momentum $p_{1,2} = \pm 100 \text{ MeV}$ in rest frame What are the nucleon momenta in the moving deuteron?

Basics: Nuclear motion

Exercise: Perform boost of nucleon configuration in deuteron

$$\begin{pmatrix} E \\ p \end{pmatrix}_{\text{moving}} = \begin{pmatrix} \frac{1}{\sqrt{1-v^2}} & \frac{v}{\sqrt{1-v^2}} \\ \frac{v}{\sqrt{1-v^2}} & \frac{1}{\sqrt{1-v^2}} \end{pmatrix} \begin{pmatrix} E \\ p \end{pmatrix}_{\text{rest}}$$
 Lorentz boost
Applies to deuteron as a whole and to individual nucleons

Deuteron:
$$(E_D)_{\text{moving}} = \frac{1}{\sqrt{1 - v^2}} (E_D)_{\text{rest}} = \frac{1}{\sqrt{1 - v^2}} M_D$$

$$\frac{1}{\sqrt{1 - v^2}} = \frac{(E_D)_{\text{moving}}}{M_D} = \frac{200 \text{ GeV}}{2 \text{ GeV}} = 100 \qquad \frac{v}{\sqrt{1 - v^2}} \approx \frac{1}{\sqrt{1 - v^2}} \quad (v \approx 1)$$

Nucleon 1, 2: $(E_{1,2})_{\text{rest}} \approx 1 \text{ GeV} \qquad (p_{1,2})_{\text{rest}} = \pm 0.1 \text{ GeV}$

$$(p_{1,2})_{\text{moving}} = 100 \times (1 \text{ GeV} \pm 0.1 \text{ GeV}) = \begin{cases} 110 \text{ GeV} \\ 90 \text{ GeV} \end{cases}$$
 Large momentum difference!

Basics: Nuclear motion

-100 MeV

Boost conserves nucleon light-cone momentum fractions

$$\frac{(E+p^z)_{1,2}}{(E+p^z)_D} = \text{invariant}$$

Internal motion of nucleons with \sim few 10 MeV momenta has large effect on momentum distribution in nucleus moving with \gg 1 GeV momentum

 \rightarrow large effect on high-energy scattering processes on nucleus (in any reference frame)

Need boost-invariant description of structure of fast-moving nucleus: Light-front wave function

Basics: Nuclear interactions

Naive expectation: Interactions of nucleons in nucleus have little effect on high-energy scattering processes at $\gg 1$ GeV

Simple arguments show that this is not necessarily so!

Nucleon interactions involve intermediate states with additional hadrons: Mesons (π , σ , vector,...), baryon resonances (Δ , ...), high-mass states

In low-energy structure and reactions $q \sim k_{bind}$, the high-mass intermediate states can be "integrated out": EFT approach

High-energy reactions $\omega \gg M_{hadron}$ can sample intermediate states up to the scale ω : Cannot a priori assume that they are suppressed!

"Wave function" in relativistic context: Particle number not fixed, depends on scale of probe

Need to organize dynamics such that truncation of nuclear structure to nucleon constituents becomes possible, and non-nucleonic DoF can be accounted for as corrections

Possible in light-front form of dynamics (\rightarrow will be seen later)

Essential techniques

Interactions: Non-covariant representation

Form of relativistic dynamics: Instant form \rightarrow light-front form

Interactions: Non-covariant representation

In describing high-energy scattering on nuclei we use the non-covariant representation of interactions: Wave function, configurations, intermediate states...

Here: Introduce/review basics using example from low-energy interactions → Lectures Pastore, Gnech

 $\langle N(p_2')N(p_1') | \hat{T} | N(p_2)N(p_1) \rangle$ NN scattering amplitude at nuclear energies

S-matrix element, gives differential cross section

Transition between asymptotic states

 $p'_2 + p'_1 = p_2 + p_1$ 4-momentum conservation

Implies 3-momentum and energy conservation

Consider transition through 1-pion exchange interaction. Apply non-covariant perturbation theory:

$$\hat{H} = \hat{H}_0 + \hat{H}_{\text{int}} \qquad \qquad \hat{T} = \hat{H}_{\text{int}} + \hat{H}_{\text{int}} \frac{1}{E - \hat{H}_0} H_{\text{int}} + \dots$$

 $p'_{2} + p'_{1} = p_{2} + p_{1}$

 $E'_{2} + E'_{1} = E_{2} + E_{1}$

Interactions: Non-covariant representation

Interactions cause transition to intermediate states

Interactions conserve 3-momentum:

$$\sum \mathbf{p}$$
 (interm) $=$ $\sum \mathbf{p}$ (initial) $=$ $\sum \mathbf{p}$ (final)

All particles are on their mass shell, also in intermediate states:

$$p_{1,2}^2 = m^2$$
, $E_{1,2} = \sqrt{|\mathbf{p}_{1,2}|^2 + m^2}$, $p_\pi^2 = M_\pi^2$, $E_\pi = \sqrt{|\mathbf{p}_\pi|^2 + M_\pi^2}$

$$\sum E$$
 (interm) $eq \sum E$ (initial) $= \sum E$ (final)

Transition amplitude \propto energy denominator $1/\Delta E$

Interactions: Non-covariant representation

Properties of non-covariant representation

Particles always on mass shell, even in intermediate states

3-momentum always conserved, even in intermediate states

Energy not conserved in intermediate states, only between asymptotic states

 \rightarrow 4-momentum not conserved in intermediate states!

Reasons for use

Intermediate states with well-defined particle content - configurations, constituents

Interpretation of processes as transitions

Concept of wave function defined in non-covariant representation

$$\langle N_1, N_2, \dots, N_N | A \rangle$$
 $\sum_{i}^{N} \mathbf{p}_i = \mathbf{p}_A$ $\sum_{i}^{N} E_i \neq E_A$

Appropriate for high-energy scattering on composite systems

Interactions: Covariant representation

 $\langle N_2' N_1' \,|\, \hat{T} \,|\, N_2 N_1 \rangle \quad = \quad$

 $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ $\frac{\text{couplings}}{p_{\pi}^2 - M_{\pi}^2}$

 $p_{\pi} = p_1 - p'_1 = p'_2 - p_2$ pion 4-momentum

(Feynman diagram)

Interactions conserve 4-momentum

Intermediate particles are off mass shell: $p_{\pi}^2 \neq M_{\pi}^2$ ("virtual particles")

Used in point-particle field theories (QCD, EFTs): Off-shell behavior of Green functions well-defined

Equivalence of non-covariant and covariant representations can be demonstrated in simple field theories

Some uses with composite systems are possible, but require additional considerations

Relativistic dynamics: Forms

In treatment of high-energy scattering on nuclei we use the non-covariant representation of interactions

Depends on choice of time \leftrightarrow energy and coordinate \leftrightarrow momentum variables

Introduce/review forms of relativistic dynamics: Instant form, light-front form

Relativistic dynamics: Instant form

 $x^{\mu} = (x^0, x^1, x^2, x^3)$ 4-dim spacetime $x^0 = t$ time, $\mathbf{x} \equiv (x^1, x^2, x^3)$ space usual choice of variables

States of system defined at fixed x^0

Evolution in time x^0 described by hamiltonian P^0

Translational invariance in 3-coordinate \mathbf{x} ensures conservation of 3-momentum \mathbf{P}

Relativistic dynamics: Instant form

Free particle

$$p^{\mu} = (E, \mathbf{p})$$
 $p^{2} = p^{\mu}p_{\mu} = E^{2} - |\mathbf{p}|^{2} = m^{2}$ $E = +\sqrt{|\mathbf{p}|^{2} + m^{2}}$ Energy-momentum relation

 $|\mathbf{p}\rangle$ Particle states labeled by 3-momentum. Sometimes write $|p\rangle$, but independent variable is always 3-momentum

 $\langle \mathbf{p}' | \mathbf{p} \rangle = 2p^0 (2\pi)^3 \delta^{(3)} (\mathbf{p}' - \mathbf{p})$ Normalization of states Factor p^0 included for relativistic covariance

$$\int d\Gamma_p \equiv \int \frac{d^4 p}{(2\pi)^4} \, 2\pi \delta(p^2 - m^2) \, \theta(p^0) \, = \, \int \frac{d^3 p}{(2\pi)^3 2E(\mathbf{p})}$$

Invariant phase space element

Relativistic dynamics: Instant form

Bound state

$$\langle N(\mathbf{p}_1)N(\mathbf{p}_2)..N(\mathbf{p}_A) | A(\mathbf{P}) \rangle = 2E_A (2\pi)^3 \delta^{(3)} (\sum_i^A \mathbf{p}_i - \mathbf{P}) \Psi(\{\mathbf{p}_i\} | \mathbf{P})$$

Expand state in products of free-particle states

$$2E_A \int d\Gamma_1 \dots \int d\Gamma_A (2\pi)^3 \delta^{(3)} \left(\sum_i^A \mathbf{p}_i - \mathbf{P}\right) \Psi^*(\{\mathbf{p}_i\} \mid \mathbf{P}) \Psi(\{\mathbf{p}_i\} \mid \mathbf{P}) = 1$$

Normalization of wave function

 $\langle A(\mathbf{P}') | A(\mathbf{P}) \rangle = 2E_A (2\pi)^3 \delta^{(3)}(\mathbf{P}' - \mathbf{P})$

Normalization of state (CM motion)

Wave function describes expansion of bound state in free-particle states

Here: Deal with wave function as abstract object, independent of dynamical equation. Wave functions for specific interactions can be obtained as solution of dynamical equation.

Spin/isospin quantum numbers: Later

Useful to review: Concepts and formulas can be extended to light-front quantization

Light-cone components

$$a^{\pm} \equiv a^0 \pm a^3$$
 $\mathbf{a}_T \equiv (a^1, a^2)$

 $ab = \frac{a^+b^- + a^-b^+}{2} - \mathbf{a}_T \cdot \mathbf{b}_T$

light-cone components of 4-vector a^{μ}

$$a^2 = a^+ a^- - |\mathbf{a}_T|^2$$
 scalar product and square

Light-front form of dynamics

 $x^+ = x^0 + x^3 = 0$ hypersurface tangential to light-cone (3D plane)

Wave front of light wave traveling in -3 direction (= surface of constant phase)

Define states of system at light-front time $x^+ = 0$

Evolution in x^+ described by hamiltonian P^-

Light-front dynamics has many interesting formal properties: Representation of Poincare group, constrained dynamics, ...

Here: Interested in applications to high-energy scattering on nuclei processes. Take practical attitude. Start with basic features, learn about other features as needed

Boosts in light-front form

$p^+ \rightarrow e^{\eta} p^+$	Longitudinal boost (3-direction)
$p^- \rightarrow e^{-\eta} p^-$	Light-cone components diagonalize boost, transform multiplicatively
	η rapidity = hyperbolic angle, $v = \tanh \eta$

$$\alpha = \frac{p^+}{p_{\rm ref}^+}$$

Light-cone fractions boost-invariant

Simple technique for performing boosts of kinematic variables: Compute fraction α in "old" frame, take p_{ref}^+ in "new" frame, obtain p^+ in new frame Exercise: Perform boost of nucleon configuration in deuteron using light-front variables

Boost-invariant momentum variables for wave functions: Light-front wave functions \rightarrow following

Free particle

$$p^{+}, \mathbf{p}_{T} \quad \text{momentum} \qquad p^{-} \quad \text{energy}$$

$$p^{2} = p^{+}p^{-} - |\mathbf{p}_{T}|^{2} = m^{2} \qquad p^{-} = \frac{m^{2} + |\mathbf{p}_{T}|^{2}}{p^{+}} \qquad \text{energy } p^{-} \text{ fixed by mass shell condition}$$

$$p^{+} > 0 \quad \text{for physical particle because} \qquad p^{+} = p^{0} + p^{3} = \sqrt{m^{2} + |\mathbf{p}_{T}|^{2} + (p^{3})^{2}} + p^{3} > 0$$

$$p^{-} > 0 \qquad \text{regardless of sign of } p^{3}$$

 $|p^+, \mathbf{p}_T\rangle$ free particle state

 $\langle p'^+, \mathbf{p}'_T | p^+, \mathbf{p}_T \rangle = 2p^+ (2\pi)^3 \delta(p'^+ - p^+) \,\delta^{(2)}(\mathbf{p}'_T - \mathbf{p}_T)$ normalization of states

$$\int d\Gamma_p = \int_0^\infty \frac{dp^+}{(2\pi)\,2p^+} \int \frac{d^2p_T}{(2\pi)^2}$$

invariant phase space element

Bound state

$$\langle N(p_1^+, \mathbf{p}_{1T}) \dots N(p_A^+, \mathbf{p}_{AT}) | A(\mathbf{P}) \rangle = (2\pi)^3 2P^+ \,\delta(\sum_i^A p_i^+ - P^+) \,\delta^{(2)}(\sum_i^A \mathbf{p}_{iT} - \mathbf{P}_T) \,\Psi(\{p_i^+, \mathbf{p}_{iT}\} | \mathbf{P})$$

Nucleon light-cone momenta satisfy

$$\sum_{i}^{A} p_{i}^{+} = P^{+}, \qquad \sum_{i}^{A} \mathbf{p}_{iT} = \mathbf{P}_{T}$$

Boost invariance (longitudinal): Wave function depends only on light-cone fractions

$$\alpha_i \equiv \frac{Ap_i^+}{P_A^+} \qquad (i = 1, \dots, A) \qquad \qquad \sum_{i=1}^A \alpha_i = A$$

 $\Psi \equiv \Psi(\{\alpha_i, \mathbf{p}_{iT}\} \mid \mathbf{P}_T) \qquad \text{independent of } P^+$

In many applications we can use nucleus rest frame $\mathbf{P}_T = 0$

Deuteron

Two nucleons: 1,2 or p, n $\alpha_1 + \alpha_2 = 2$, $\mathbf{p}_{1T} + \mathbf{p}_{2T} = \mathbf{P}_T$

Wave function effectively depends on variables of one nucleon: $\Psi(\alpha_1, \mathbf{p}_{1T} | \mathbf{P}_T)$

Normalization:

$$\int \frac{d\alpha_1}{\alpha_1(2-\alpha_1)} \int \frac{d^2 p_{1T}}{(2\pi)^2} \Psi^*(\alpha_1, \mathbf{p}_{1T} | \mathbf{P}_T) \Psi(\alpha_1, \mathbf{p}_{1T} | \mathbf{P}_T) = 1$$

Spin/isospin quantum numbers, dynamical equation, connection with non-relativistic WF: Later

Spin degrees of freedom

Light-front helicity states: Later

→ Lecture Cosyn

High-energy scattering on nuclei

Study scattering processes at multi-GeV energy/momentum transfers

Exhibit effect of energy non-conservation in intermediate states of scattering amplitude

Compare equal-time and light-front form of dynamics

Arguments based on: Frankfurt, Strikman, Phys. Rept. 76, 215 (1981) [INSPIRE]

High-energy scattering: Example

High-energy electron-deuteron quasi-elastic scattering

 ${\cal N}$ active nucleon, ${\cal S}$ spectator nucleon

$$e(k) + D(p_D) \rightarrow e'(k') + N'(p'_N) + S'(p'_S)$$

 $k + p_D = k' + p'_N + p'_S$ 4-momentum conserved in overall process (asymptotic states)

Active nucleon momentum p_N in intermediate state determined by rules of noncovariant interactions

 $D \rightarrow N + S$ matrix element preserves 3-momentum (wave function) $p_N^2 = m^2$ mass shell condition fixes nucleon energy $p_N \neq p_D - p_S \quad \curvearrowright \quad p_N \neq k - k' + p'_N$

 $k + p_N \neq k' + p'_N$ 4-momentum not conserved in electron-nucleon subprocess

High-energy scattering: eN subprocess

Quantify effect of 4-momentum non-conservation in electron-nucleon subprocess

$$s_{eN} = (k + p_N)^2$$

$$s'_{eN} = (k' + p'_N)^2$$

Invariant energy before and after eN interaction

$$s'_{eN} = (k' + p'_N)^2 = (k + p_D - p_S)^2$$

using external 4-momentum conservation

Compute difference of subprocess invariant energies

$$s'_{eN} - s_{eN} = (k + p_D - p_S)^2 - (k + p_N)^2$$

= $2k \cdot (p_D - p_S - p_N) + (p_D - p_S)^2 - p_N^2$

involves projectile 4-momentum *k*, large!

related to deuteron binding energy, small

High-energy scattering: Equal-time dynamics

Use deuteron rest frame: $p_D = (M_D, \mathbf{0}), \quad k = (\omega, -\omega \mathbf{e}_3)$ initial electron in -3 direction energy $\omega \gtrsim 1$ GeV (or \gg)

Equal-time dynamics

$$\begin{split} (p_D - p_S - p_N)^0 &\neq 0 & \text{non-conservation in 0-component (conventional energy)} \\ p_D^0 &= M_D & p_S^0 \approx m + \frac{|\mathbf{p}_S|^2}{2m} & p_N^0 \approx m + \frac{|\mathbf{p}_N|^2}{2m} & \mathbf{p}_N = -\mathbf{p}_S \\ |\mathbf{p}_{S,N}| \sim \text{few 100 MeV} \\ (p_D - p_S - p_N)^0 &= \frac{|\mathbf{p}_S|^2}{m} + (M_D - 2m) &= \text{kinetic + binding energy} \\ s'_{eN} - s_{eN} &= 2k^0(p_D - p_S - p_N)^0 & \approx 2\omega \frac{|\mathbf{p}_S^2|}{m} & \text{grows with incident energy!} \end{split}$$

Electron-nucleon subprocess amplitude far "off energy shell" in limit of high-energy scattering Cannot be connected with "on energy shell" amplitude measured in free eN scattering No composite picture of high-energy scattering

High-energy scattering: Light-front dynamics

Use again deuteron rest frame

 $k^+ = 0$ $k^- = 2\omega$ large light-front components of projectile 4-momentum

 $(p_D - p_S - p_N)^- \neq 0$ non-conservation in minus component (LF energy)

$$s'_{eN} - s_{eN} = 2k \cdot (p_D - p_S - p_N)$$

= $k^+ \cdot (p_D - p_S - p_N)^- + k^- \cdot (p_D - p_S - p_N)^+ = 0 +$ terms independent
of energy ω
0

Use of light-front dynamics removes the term $\propto \omega$ in $s'_{eN} - s_{eN}$

Energy offshellness of eN subprocess amplitude remains finite in high-energy limit

Subprocess amplitude can be connected with "on energy shell" amplitude measured in eN scattering

Composite picture of high-energy scattering: Compute nuclear high-energy scattering amplitude from on-shell nucleon amplitudes and nuclear structure

High-energy scattering: Light-front dynamics

Light-front dynamics "aligns" the time/energy axis for nuclear dynamics with the direction of the high-energy process, in such a way that the energy nonconservation in intermediate states does not produce large effects

Light-front dynamics is the only scheme that avoids "large" energy offshellness in the nucleon subprocess amplitude and permits a composite description of high-energy scattering. Its use is necessary, not optional, for a composite description.

In low-energy processes, there is no need to use light-front dynamics

Energy nonconservation in intermediate states is a necessary consequence of interactions and nuclear binding (\rightarrow wave function). Its manifestations in high energy scattering are physical effects, not technical artifacts.

Electroproduction and deep-inelastic scattering: Light-front direction usually aligned with momentum transfer 4-vector q. Conclusions re light-front dynamics remain the same as in example here.

High-energy scattering: Analogue

Teeing up a golf ball

Golf club = high energy process

Golf ball = nucleon

Tee = low-energy nuclear structure

Light-front quantization

Low-energy structure aligned with direction of high-energy process

Clean separation of scales

Other quantization schemes

Low-energy structure not aligned with direction of high-energy process

Low-energy structure produces effects of the order of the high collision energy

Supplemental material