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1 Solving the two body Schrödinger equation

Let us consider for now a system of two bosons of spin 0 of mass m1 and m2. Their positions are
described by the vectors r1 and r2. The Hamiltonian operator reads

Ĥ = − ∇2
1

2m1
− ∇2

2

2m2
+ V̂ (r1, r2) . (1)

Let us also suppose that our potential depends only on the relative position of the particles only i.e.

V̂ (r1, r2) = V̂ (r1 − r2) . (2)

To solve this problem we introduce the relative coordinate

r = r1 − r2 , (3)

and the center of mass coordinate

R =
m1r1 +m2r2
m1 +m2

. (4)

Using these definitions the position coordinates of the two particles can be rewritten as

r1 = R+
µ

m1
r , r2 = R− µ

m2
r , (5)

where µ = m1m2

m1+m2
is the reduced mass. Using these coordinates we can rewrite the Laplacians as

∇1 =
µ

m2
∇R +∇r , ∇2 =

µ

m1
∇R −∇r , (6)

from which it is easy to rewrite the kinetic energy operator

T = − ∇2
1

2m1
− ∇2

2

2m2
= − ∇2

R

2(m1 +m2)
− ∇2

r

2µ
. (7)

Notice that now the motion of the center of mass is now completely decoupled. Let us now go back to
our time-independent Schrödinger equation

ĤΨ(R, r) = EΨ(R, r) . (8)

We can use as educated guess for our solution

Ψ(R, r) = ψR(R)ψr(r) , (9)

and dividing Eq. (8) by the wave function we obtain

− 1

ψR(R)

∇2
RψR(R)

2(m1 +m2)
+

[
− 1

ψr(r)

∇2
rψr(r)

2µ
+ V̂ (r)

]
= E . (10)
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Since the two terms separately depend on R and r and they are equal to a number it means they are
both equal to a number. This means that we can separate the two equations as

− ∇2
RψR(R)

2(m1 +m2)
= ERψR(R) , (11)

and

−∇2
r

2µ
ψr(r) + V̂ (r)ψr(r) = Erψr(r) . (12)

The first equation is the free motion of the center of mass. The part we are going to focus our interest
on is the solution of the relative motion equation. In the rest of the notes we will drob the subscript
r when we will discuss the wave function of the relative motion.

2 The Deuteron wave function

The deuteron is the simplest nucleus formed by a proton and a neutron. Experimentally it has been
found that:

• its binding energy is Ed = −2.22457 MeV;

• its total angular momentum and parity is Jπ = 1+;

• its magnetic moment is µ = 0.8574 µN;

• its quadrupole moment id Q = 0.2859 e fm2.

The nucleons are identical for the nuclear interaction therefore we can exploit the isospin symmetry to
construct the wave function. We will consider the breaking of the isospin symmetry only at the level
of the kinetic energy operator using as m1 = 938.272 MeV the mass of the proton and m2 = 939.565
MeV from which µ = 469.46 MeV. The wave function will be then a function of the isospin (ti), the
spin (si) and the relative position of the two particles

ψd(r, s1, s2, t1, t2) , (13)

in more detail we can write it as a tensor product of

ψd(r, s1, s2, t1, t2) ∝ [ψr(r)⊗ ψS(s1, s2)]J ⊗ ψT (t1, t2) . (14)

Since the nucleon are fermions we want the nuclear wave function to be completely anti-symmetric
under exchange of the two particles and that the total angular momentum is Jπ = 1+.

For the spin and isospin part of the wave function we want to construct states with well defined
total spin and total isospin. We can do this using the Clebch-Gordan coefficients starting from the
single spin (isospin) state

|SSz⟩ = χSSz
= [s1s2]SSz

=
∑

s1z,s2z

⟨1/2 s1z 1/2 s2z|S Sz⟩|1/2 s1z⟩|1/2 s2z⟩ (15)

and analogously

|TTz⟩ = χTTz
= [t1t2]TTz

=
∑

t1z,t2z

⟨1/2 t1z 1/2 t2z|T Tz⟩|1/2 t1z⟩|1/2 t2z⟩ , (16)

where we defined three different notation different notation to define the same state that we will use
in the notes.

The spatial part of the wave function can be written as

ψL,M (r) = fL(r)YL,M (r̂) (17)

where Yℓ,m are the standard spherical harmonics. The first thing we want to do is to construct the
correct total angular momentum. To do so we can combine the angular momentum and spin part
writing the spatial-spin wave function as

ψJJz
(r) =

∑
L

fL(r)
[
YL(r̂)χS

]
JJz

, (18)
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where [
YL(r̂)χS

]
JJz

=
∑
M

⟨LM ,S Sz|J Jz⟩YL,M (r̂)χSSz
. (19)

We can add now the isospin to our wave function to obtain the full wave function

ψJJz (r, T, Tz) =
∑
L

fL(r)
[
YL(r̂)χS

]
JJz

χTTz
. (20)

Notice how from Eq. (13) we passed from the quantum numbers of the single particle s1, s2, t1, t2 and r̂
to the total isospin, total spin, orbital angilar momentum and total angular momentum L, S, J, Jz, T, Tz
maintaining the same number of degrees of freedom.

We can now determine the quantum numbers. We want the parity to be positive so we want

ψJJz (r, T, Tz) = ψJJz (−r, T, Tz) . (21)

The spin isospin structure does not change under parity as well as fL(r) that depends only on the
magnitude of r. The only piece in the wave function that change are the spherical harmonics

YL,M (r̂) = (−)LYL,M (r̂) . (22)

Therefore in order to satisfy Eq. (21) we need L to be even. The possible values for the total spin
are S = 1 and S = 0. However to have J = 1 with S = 0 would imply that L = 1 that does not
satisfy the parity condition. The only possibility is that S = 1 which imply that L = 0 and L = 2 only
are possible. The only possible values for the total isospin are T = 0 and T = 1 as for the spin. To
determine it we need now to impose the anti-symmetry of the wave function exchanging the particle
1 and 2 i.e.

ψ12
JJz

(r, T, Tz) = −ψ21
JJz

(r, T, Tz) . (23)

By using the Clebch-Gordan coefficients and spherical harmonic properties it is easy to see that

[t2t1]TTz = (−1)T+1[t1t2]TTz , (24)

[s2s1]SSz
= (−1)S+1[s1s2]SSz

, (25)

YLM (−r̂) = (−)LYLM (r̂) , (26)

and so the wave function under the exchange of the particle 1 and 2 reads then

ψ21
JJz

(r, T, Tz) =
∑

L=0,2

(−)L+S+T fL(r)
[
YL(r̂)χS

]
JJz

χTTz
, (27)

which imposing Eq. (23) implies T = 0. The final wave function reads then

ψ1Jz (r, T = 0, Tz = 0) =
∑

L=0,2

fL(r)
[
YL(r̂)χS=1

]
1Jz

χT=0Tz=0 , (28)

where the only term to be determined are the radial functions fL(r) that we will construct using the
Schrödinger equation. Before discussing this, however, we will return back to our Schrödinger equation.

3 The radial Schrödinger equation

We are now focusing on the Schrödinger equation describing the relative motion of the to particles
given in Eq. (12). The nuclear interaction that we are going to use is given by

V̂ = VCT (r)

(
3 + σ1 · σ2

4

)(
1− τ1 · τ2

4

)
δL,0 + (V

(1)
OPE(r)Ŝ12 + V

(2)
OPE(r)σ1 · σ2)(τ1 · τ2) , (29)

where Ŝ12 is the tensor operator

Ŝ12 = 3(σ1 · r̂)(σ2 · r̂)− σ1 · σ2 (30)
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with σi(τi) the Pauli matrices acting on the spin (isospin). Modern nuclear theory shows that the
contact potential VCT is needed only in the 3S1 partial wave [vK20]. Its radial component is given by

VCT (r) =
CS

π3/2R3
S

e−(r/RS)
2

, (31)

where RS = 0.7 fm and CS = −1.2565 fm2 is a constant fixed to reproduce the binding energy of
the deuteron. RS plays the role of a cut-off. The radial components of the one pion exchange (OPE)
potential are given by

V
(1)
OPE(r) =

g2A
12π

m3
π

F 2
π

e−mπr

mπr

(
1 +

3

mπr
+

3

(mπr)2

)
CRL

(r) , (32)

V
(2)
OPE(r) =

g2A
12π

m3
π

F 2
π

e−mπr

mπr
CRL

(r) , (33)

where

CRL
(r) = 1− 1

(r/RL)
6
e(r−RL)/aL + 1

, (34)

is the regularizing function with RL = 1.0 fm and aL = RL/2. The other constants are the nucleon
axial coupling gA = 1.29, the pion decay constant Fπ = 184.80 MeV and the mean mass of the pion
mπ = 138.04 MeV. The regularization as well as the cut-off RL and RS chosen for this example are
arbitrary. Other choices can be valid as well. Here we made this to show you an application close as
possible to the present state of art (see Ref. [PGS+15]).

Now that we have the explicit form of the potential what we want is to derive the differential
equations for the functions fL(r). To do so we can compute the matrix elements

⟨
[
YL′χS′

]
χT ′ |T̂ + V̂ |ψd⟩ = ⟨

[
YL′χS′

]
χT ′ |E|ψd⟩ . (35)

For the right hand side, since E is a number we have

⟨
[
YL′χS′

]
χT ′ |E|ψd⟩ = EfL′(r) (36)

The kinetic energy operator can be written in spherical coordinates as

T̂ = − 1

2µ

(
1

r2
∂

∂r

(
r2
∂

∂r

)
+
L̂2

r2

)
(37)

where L̂ is the standard angular momentum operator. Since the spherical harmonics are the eigen-
function of L̂2 and no spin and isospin operator appears, the kinetic energy matrix element in Eq. (35)
reduces to

⟨
[
YL′χS′

]
χT ′ |T̂ |ψd⟩ = − 1

2µ

(
1

r2
∂

∂r

(
r2
∂fL′(r)

∂r

)
+
L′(L′ + 1)

r2
fL′(r)

)
. (38)

The remaining part is to compute the matrix elements of the nuclear interaction i.e.

⟨
[
YL′χS′

]
χT ′ |V̂ |ψd⟩ , (39)

that with a bit of algebra reduces to compute the following matrix elemnts

χ†
T ′(τ1 · τ2)χT ′ , (40)

χ†
S′(σ1 · σ2)χS′ , (41)∫

dr̂
[
YL′(r̂)χS′

]†
JJz

Ŝ12

[
YL(r̂)χS

]
JJz

. (42)

To do so we need to introduce the Wigner-j coefficients.
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3.1 Some usefull definitions

From now on we will use the following notation for coupling angular momentum[
TKΨL

]
JJz

=
∑
κM

(Kκ,LM |JJz)TKκΨLM , (43)

where TKκ is a generic spherical tensor operator of rank K and component z given by κ, while ΨLM

rappresents a state of angular momentum L,M . (Kκ,LM |JJz) is a Clebsh-Gordan coefficient.
The Wigner-3j coefficient are defined as(

j1 j2 j3
m1 m2 m3

)
≡ (−1)j1−j2−m3

√
2j3 + 1

⟨j1m1j2m2 | j3 (−m3)⟩ . (44)

and represent an alternative to the Clebch-Gordan coefficient.
The spherical harmonics can be coupled and rewritten in term of the Wigner-3j coefficients by

making use of the contraction rule[
Yℓ1Yℓ2

]
LM

=
Bℓ

ℓ1ℓ2√
4π

YLM (r̂) , BL
ℓ1ℓ2 = ℓ̂1ℓ̂2(−)ℓ1+ℓ2

(
ℓ1 ℓ2 L
0 0 0

)
, (45)

where ℓ̂ =
√
2ℓ+ 1.

The Wigner-6j symbol is used for expressing the coupling of three angular momenta

|(j1j2)j12j3JM⟩ =
∑
j23

T j1j2j3
j12j23J

|j1(j2j3)j23JM⟩ (46)

where

T j1j2j3
j12j23J

= (−)j1+j2+j3+J ĵ12ĵ23

{
j1 j2 j12
j3 J j23

}
. (47)

The same is true for the Wigner-9j coefficients that are use to couple four angular momenta

|(j1j2)j12(j3j4)j34JM⟩ =
∑
j13j24

N j1j2j3j4
j12j34j13j23J

|(j1j3)j13(j2j4)j24JM⟩ (48)

where

N j1j2j3j4
j12j34j13j23J

= ĵ13ĵ24ĵ12ĵ34

 j1 j2 j12
j3 j4 j34
j13 j24 J

 . (49)

These coefficients can be computed using standard computational tools as Mathematica [Inc]. For
most of the programming languages there are libraries that contains function in which the Wigner-j
coefficients are computed. For whom is interested in a more detailed reading I suggest Ref. [Edm55].

3.2 Pure spin and isospin operators

We can now pass to compute some useful quantity for the spin and isospin. Let us start with

[σ|1/2⟩]1/2Sz
=
∑
σzsz

⟨1σz1/2 sz|1/2, Sz⟩σ1σz
|1/2 sz⟩ . (50)

Note that σσz are the spherical components of the Pauli matrices i.e.

σ10 = σz , σ1−1 =
1√
2
(σx − iσy) , σ1+1 = − 1√

2
(σx + iσy) . (51)

Let us supposed that Sz = 1/2 then we have

[σ|1/2⟩]1/2,1/2 = ⟨1 0 , 1/2 1/2|1/2 1/2⟩σ10|1/2 1/2⟩+ ⟨1 1 , 1/2 − 1/2|1/2 1/2⟩σ11|1/2 − 1/2⟩

= − 1√
3
|1/2 1/2⟩+

√
2

3
(−

√
2)|1/2 1/2⟩ = −

√
3|1/2 1/2⟩ ,

(52)
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and analogously for Sz = −1/2. Therefore

[σ|1/2⟩]1/2Sz
= −

√
3|1/2Sz⟩ . (53)

The operator σ1 · σ2 can be rewritten in term of the spherical component of the Pauli matrices as

σ1 · σ2 = −σ1
1+1σ

2
1−1 − σ1

1−1σ
2
1+1 + σ1

10σ
2
10

= −
√
3⟨1 + 1 , 1 − 1|0, 0⟩σ1

1+1σ
2
1−1 −

√
3⟨1 − 1 , 1 + 1|0, 0⟩σ1

1−1σ
2
1+1 −

√
3⟨1 0 , 1 0|0, 0⟩σ1

10σ
2
10

= −
√
3
[
σ1
1σ

2
1

]
00
.

(54)
Similar thing happens for the operator τ1 · τ2.

We can now compute explicitly the effect of this operator on the state χS ,

(σ1 · σ2)χSSz
= −

√
3
[
σ1
1σ

2
1

]
00

[|s1⟩ |s2⟩]SSz
= −

√
3⟨0 0 , S Sz|S Sz⟩

[[
σ1
1σ

2
1

]
00

[|s1⟩ |s2⟩]S
]
SSz

,

(55)
that can be rewritten using the Wigner-9j coefficient as

(σ1 · σ2)χSSz
= −

√
3
∑
Σ1Σ2

0̂ŜΣ̂1Σ̂2

 1 1 0
1/2 1/2 S
Σ1 Σ2 S

[[σ1
1 |s1⟩

]
Σ1

[
σ2
1 |s2⟩

]
Σ2

]
SSz

(56)

Using then Eq. (53) we can easily write

(σ1 · σ2)χSSz
= −6

√
3Ŝ

 1 1 0
1/2 1/2 S
1/2 1/2 S

 [|s1⟩|s2⟩]SSz
, (57)

From which it is straightforward to obtain

χ†
S′S′

z
(σ1 · σ2)χSSz

= −6
√
3Ŝ

 1 1 0
1/2 1/2 S
1/2 1/2 S

 δSS′δSzS′
z
, (58)

and analogously for the isospin.

3.3 Tensor operator

Before computing the tensor operator we need again to derive some useful relations. The first one is
to express σ · r̂ in term of the spherical harmonics. Using the fact that we can express

z

r
=

√
4π

3
Y10,

y

r
=

√
4π

3
i
Y1−1 + Y1+1√

2
,

x

r
=

√
4π

3

Y1−1 − Y1+1√
2

. (59)

and Eq. (51) we can rewrite

σ · r̂ = σx
x

r
+ σx

z

r
+ σz

z

r
=

√
4π

3
(−σ1+1Y1−1 − σ1−1Y1+1 + σ10Y10)

= −
√
12π [σ1Y1]00

(60)

where in the last step we used the same trick as in Eq. (54). We can now rewrite the tensor operator
as

Ŝ12 = 12π
[(
σ1
1Y1(r̂)

)
0

(
σ2
1Y1(r̂)

)
0

]
00

+
√
3
[
σ1
1σ

2
1

]
00
. (61)

Let us consider now the first term and rearrange it using the Wigner-9j coefficients

[(
σ1
1Y1(r̂)

)
0

(
σ2
1Y1(r̂)

)
0

]
00

=
∑
ℓ,m

ℓ̂2

 1 1 0
1 1 0
ℓ ℓ 0

 ⟨ℓ −m, ℓm|00⟩
[
σ1
1σ

2
1

]
ℓ−m

(Y1Y1)ℓm (62)
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that using Eq. (45) reduces to

[(
σ1
1Y1(r̂)

)
0

(
σ2
1Y1(r̂)

)
0

]
00

=
3√
4π

∑
ℓ,m

ℓ̂2

 1 1 0
1 1 0
ℓ ℓ 0


(

1 1 ℓ
0 0 0

)
⟨ℓ −m, ℓm|00⟩

[
σ1
1σ

2
1

]
ℓ−m

Yℓm

=
3√
4π

∑
ℓ,m

ℓ̂2

 1 1 0
1 1 0
ℓ ℓ 0


(

1 1 ℓ
0 0 0

)[[
σ1
1σ

2
1

]
ℓ
Yℓ
]
00
.

(63)
The Wigner-3j coefficient that appear above is non zero only for ℓ = 0 and 2. By inserting the values
of the Wigner coefficients it is easy to show that[(

σ1
1Y1(r̂)

)
0

(
σ2
1Y1(r̂)

)
0

]
00

= − 1

4π
√
3

[
σ1
1σ

2
1

]
00

+
1√
6π

[
Y2
[
σ1
1σ

2
1

]
2

]
00

(64)

from which we have that the tensor operator take the form

Ŝ12 = 2
√
6π
[
Y2
[
σ1
1σ

2
1

]
2

]
00
. (65)

Using this form of the tensor operator and the Wigner-j coefficients it is easy to derive the matrix
element∫
dr̂
[
YL′χS′

]†
JJz

Ŝ12

[
YLχS

]
JJz

= 30
√
6Ĵ L̂ŜL̂′Ŝ′(−)L

 2 2 0
L S J
L′ S′ J


 1 1 2

1/2 1/2 S
1/2 1/2 S′


(

2 L L′

0 0 0

)
.

(66)
We leave this last proof to the reader as exercise to get practice with the use of the Wigner-j coefficients.

3.4 Final expression for the radial equations

We can now write the expression for the radial equations. Let us write the first potential matrix
element as

⟨
[
YL=0χS=1

]
1Jz

χT=0|V̂ |ψd⟩ = (VCT (r)− 3V
(2)
OPE(r))f0(r)− 6

√
2V

(1)
OPE(r)f2(r) , (67)

⟨
[
YL=2χS=1

]
1Jz

χT=0|V̂ |ψd⟩ = (6V
(1)
OPE − 3V

(2)
OPE(r))f2(r)− 6

√
2V

(1)
OPE(r)f0(r) , (68)

From which the two radial equation reads

− 1

2µ

1

r2
∂

∂r

(
r2
∂f0(r)

∂r

)
+ V00(r)f0(r) + V02(r)f2(r) = Ef0(r) , (69)

− 1

2µ

(
1

r2
∂

∂r

(
r2
∂f2(r)

∂r

)
+

6

r2
f2(r)

)
+ V20(r)f0(r) + V22(r)f2(r) = Ef2(r) , (70)

(71)

where

V00(r) = VCT (r)− 3V
(2)
OPE(r) , (72)

V20(r) = V02(r) = −6
√
2V

(1)
OPE(r) , (73)

V22(r) = 6V
(1)
OPE(r)− 3V

(2)
OPE(r) . (74)

The numerical coefficients that multiply the radial terms can be easily computed using Eqs. (58)
and (66).

4 Solution of the radial equation

There are several ways to solve the equations above. Among the other it is worthy to mention the
Numerov method [?] that is finite difference method as well as the R-matrix approach [?] that is
particularly useful in coupled channel problems.
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In this lecture we will transform our problem to solve the two coupled differential equation in a
eigenvalue problem. We can do this using the Rayleigh-Ritz variational principle. We write our wave
function as a linear expansion over a complete basis set

|ψ⟩ =
∑
i

ci|ϕi⟩ . (75)

The variational principle says that the best the wave function is the one that minimize the expectation
value of the operator Ĥ − E respect to the variational parameters i.e.

δ

δc⋆k

∑
i,j

cic
⋆
j ⟨ϕj |Ĥ − E|ϕi⟩ = 0 . (76)

Using the orthonormality of the basis we obtain∑
i

ci⟨ϕj |Ĥ|ϕi⟩ = Ecj , (77)

which represents an eigenvalue problem.
Using the same idea we expand our functions fL(r) on a complete basis set that span all the squared

integrable functions as,

fL(r) =
∑
l

cLl gl(r) . (78)

Clearly any basis that is complete and span all the vector space is a possible choice and will return
exactly the same result if we can include an infinite number of states. However, for all practical
purposes we need to truncate our basis, therefore, we want to choose one that have the asymptotic
behavior as close as possible to the exact radial wave function. We can notice that the nuclear potential
goes to zero when r −→ ∞. This implies that the asymptotic form for the solution of the radial equation
is

fL(r) ∼ e−βr . (79)

Analogously we want the radial wave function to be finite when the two particle are close to each other
i.e.

fL(r)
r−→0−−−→ finite . (80)

Moreover we would like to have it flexible enough to describe the radial wave function and possibly
easy to manage when we compute the kinetic energy matrix elements. A optimal choice is the following

gl(r) = NlL
(2)
l (γr)e−

γr
2 , (81)

Nl = γ3/2

√
l!

(l + 2)!
. (82)

where L
(2)
l (x) are the generalized Laguerre polynomials of order 2 and γ is a non variational parameter

that is used to adjust the integration grids. A typical range for γ is 3.5 − 5.5 fm−1. With this form
the radial basis is orthonormal, i.e ∫ ∞

0

dr r2gl′(r)gl(r) = δl,l′ . (83)

4.1 Matrix elements

Using the result given in Eq. (38), the kinetic energy matrix element can be written as

⟨T̂L⟩l′,l = − h̄
2

2µ

∫ ∞

0

dr gl′(r)

[
∂

∂r

(
r2
∂

∂r

)
+ L(L+ 1)

]
gl(r) . (84)
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Performing the derivatives (that is a bit tedious) and being careful with the normalizations, the kinetic
energy matrix elements can be written as

⟨T̂L⟩l′,l = +
h̄2γ2

2µ

[
(l + L(L+ 1))I

(2)
l′,l + (l + 1) I

(1)
l′,l −

√
l(l + 2)I

(2)
l′,l−1 −

1

4
δl,l′

]
, (85)

where

I
(1)
l′,l =

Nl′Nl

γ3

∫ +∞

0

dxxe−xL
(2)
l′ (x)L

(2)
l (x) , (86)

I
(2)
l,l′ =

Nl′Nl

γ3

∫ +∞

0

dx e−xL
(2)
l′ (x)L

(2)
l (x) . (87)

‘These can be easily computed in term of l and l′ only as

I
(1)
l′,l =

1

2

√
(l + 1)(l + 2)

(l′ + 1)(l′ + 2)
for l ≤ l′ , (88)

I
(2)
l′,l =

1

2

√
(l + 1)(l + 2)

(l′ + 1)(l′ + 2)

(
(l′ + 1)− l

3

)
for l ≤ l′ . (89)

(Note: I don’t have a good reference for these formulas and I was not able to prove them so far).
Analogously, we can write the matrix element for the nuclear interaction as

⟨V̂ L′,L⟩l′,l =
Nl′Nl

γ3

∫ ∞

0

dxx2e−xL
(2)
l′ (x)VL′,L(x/γ)L

(2)
l (x) , (90)

that can be computed using for example Gauss-Laguerre quadrature

⟨V̂ L′,L⟩l′,l ≃
Nl′Nl

γ3

N∑
i=1

ωiL
(2)
l′ (xi)VL′,L(xi/γ)L

(2)
l (xi) , (91)

where ωi and xi are the Gauss-Laguerre weights and points respectively.
Using the matrix elements computed in this way we can construct the Hamiltonian matrix and

solve the eigenvalue problem using the Lapack libraries.

5 Some observables

To check that our description of the deuteron is meaningful we can try to compute some observables
and compare it to the experimental values. The mean value of the operators that I propose you to
compute are

• The mean square radius

r̂ =
1

2

∑
i=1,2

r2i , (92)

where i is the index of the particle.

• The magnetic moment

µ̂z =
∑
i=1,2

(
1 + τ iz

2

)
L̂i
z +

∑
i=1,2

[
µp

(
1 + τ iz

2

)
+ µn

(
1− τ iz

2

)]
σi
z (93)

• The quadrupole moment

Q̂ =
∑
i=1,2

(3z2i − r2i )

(
1 + τ iz

2

)
(94)
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6 Computing operators using Monte Carlo

Now that we have our wave function we want to compute some operators. The operators that we
want to compute can be pretty complex and performing the calculation as it has been done before
involving the spin, isospin, and the angular part using the Wigner coefficients and then performing
numerically the radial integrals can be tedious and inefficient in particular if we consider more complex
wave-functions. However, in this case we approach the problem in a complete numerical fashion. We
are going to perform the integration numerically using a Monte Carlo technic.

6.1 Monte Carlo Integration

Let us consider the integral

I =

∫
ddxP (x)f(x) , (95)

where x = (x1, . . . , x2) and P (x) is a function such that P (x) ≥ 0 for any x and∫
ddxP (x) = 1 . (96)

P (x) is then a probability density and we can write the integral as the mean value of f with respect
to P ,

I = ⟨f⟩P . (97)

This is guaranteed by the central limit theorem that says that the quantity

X =
1

N

N∑
xi∈P (x),i=1

f(xi) , (98)

in the limit N −→ ∞ the probability distribution of X is

p(X) ∝ exp

(
(X − ⟨f⟩p)2

2(⟨f2⟩p − ⟨f⟩2p)/N

)
(99)

that is a Gaussian distribution centered at ⟨f⟩p with variance σ2 = (⟨f2⟩p − ⟨f⟩2p)/N . So to compute
an integral we just need to construct the probability distribution P and then generate a sample of N
configurations that follows this distribution. How do we generate them? What can be used the M(RT)2

algorithm. We are not going to prove any part of the algorithm but just detail it. We only mention
that it makes use of the detailed balance principle. The practical implementation is the following:

• Given x, a new trial point xt is generated, for example as

xt = x+∆ξ , (100)

where ∆ is a fixed step and ξ = (ξ1, . . . , ξN ) with the ξi uniformly distributed between −1/2 and
1/2

• The xt is accepted with probability

min

{
1,
P (xt)

P (x)

}
. (101)

So if P (xt)/P (x) ≥ 1 the xt is always accepted. If P (xt)/P (x) < 1 xt is accepted with
probability P (xt)/P (x). To implement this is to select a random number η ∈ [0, 1] and accept
xt if P (xt)/P (x) > η.

• The selection on how big ∆ should be is more heuristic. A reasonable choice is to choose ∆ such
that on average half of the moves are accepted and half of them rejected.
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6.2 Matrix element of an operator

We can now compute the matrix element of an operator Ô for the deuteron wave function. We can
write it as

⟨Ô⟩ = ⟨ψ|Ô|ψ⟩
⟨ψ|ψ⟩

=
1

⟨ψ|ψ⟩

∫
dr1 dr2ψ(r1, r2)

†Ôψ(r1, r2) . (102)

To use the sampling we discuss before we need to construct our probability density in the integral.
We can do it in the following way, can use Monte Carlo sampling to compute the integral. So we can
rewrite the integral as a sum over the samplings R = {ri1, ri2} where i is the

⟨Ô⟩ = 1

⟨ψ|ψ⟩

∫
ψ†
i Ôψi =

∫
|ψi|2

⟨ψ|ψ⟩
ψ†
i Ôψi

|ψi|2
=

∫
P (ri1, r

i
2)
ψ†
i Ôψi

|ψi|2
=
∑
Ri∈P

ψ†
i Ôψi

|ψi|2
. (103)

where Ri = {ri1, ri2} is the sample. Clearly what we need now to do is to understand how to compute

ψ†
i Ôψi.
The operator that we are dealing are typically spin matrices acting on a single particle σx

i , σ
y
i , σ

z
i ,

the isospin matrices acting on a single particle τ iz, and the derivative operators ∂
∂xi ,

∂
∂yi ,

∂
∂zi .

For the spin and isospin operator we know how they act on the single particle therefore we need
to express our wave function in term of the spin and isospin of the single particles. To do so we can
project our wave function as

ψs1s2,t1t2(r1, r2) = ⟨s1, s2; t1, t2; r1, r2|ψ1,Jz
⟩

=
∑

L=0,2 fL(r)
∑L

M=−L ⟨L,M , 1, Sz|1, Jz⟩⟨1/2, s1 , 1/2, s2|1Sz⟩YL,M (r̂)⟨1/2, t1 , 1/2, t2|00⟩ .(104)

The representation of the deuteron wave function can be then organized as a matrix in which the
columns are defined by the isospin states |t1, t2⟩ and the row by the spin states |s1, s2⟩ and the matrix
elements given in Eq. (104). In the specific case of the deuteron the wave function like looks like

ψ1Jz
(r1, r2) =


ψ+1+1,+1−1 ψ+1+1,−1+1

ψ+1−1,+1−1 ψ+1−1,−1+1

ψ−1+1,+1−1 ψ+1+1,−1+1

ψ−1−1,+1−1 ψ−1−1,−1+1

 . (105)

Let us now take the operator σ1
x and apply to our wave function σ1

xψ1Jz
(r1, r2). What σ1

x does is
to invert the components with spin up in the first particle to the one in spin down and vice versa. It
is easy then to see that

σ1
xψ1Jz

(r1, r2) =


ψ−1+1,+1−1 ψ+1+1,−1+1

ψ−1−1,1−1 ψ−1−1,−11

ψ+1+1,+1−1 ψ+1+1,−1+1

ψ+1−1,+1−1 ψ+1−1,−1+1

 . (106)

Practically in this representation it exchange the top two rows with the bottom two. Similarly for σ1
y

but in this case we need to add a phase to the matrix elements i.e.

σ1
yψ1Jz

(r1, r2) = i


ψ−1+1,+1−1 ψ+1+1,−1+1

ψ−1−1,1−1 ψ−1−1,−11

−ψ+1+1,+1−1 −ψ+1+1,−1+1

−ψ+1−1,+1−1 −ψ+1−1,−1+1

 . (107)

For σ1
z we have then

ψ1Jz (r1, r2) =


ψ+1+1,+1−1 ψ+1+1,−1+1

ψ+1−1,+1−1 ψ+1−1,−1+1

−ψ−1+1,+1−1 −ψ+1+1,−1+1

−ψ−1−1,+1−1 −ψ−1−1,−1+1

 . (108)

We let the reader work out the operators σ2
x, σ

2
y and σ2

z as well as the operators τ1z and τ2z .
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To compute the derivatives, we just use a numerical approach. For example

∂

∂x1
ψ1Jz (r1, r2) =

ψ1Jz
(x1 + h, y1, z1, x2, y2, z2)− ψ1Jz

(x1 − h, y1, z1, x2, y2, z2)

2h
. (109)

On the practical point what we need to do is to compute the wave function again in two new points
generated slightly moving each of the coordinates of +h and −h and then subtract the two. A typical
value of h is 0.001 fm. We can repeat this operation for each component of the position of the particles
and have all the derivatives we need. The calculation of the derivative does not change the form of
the matrix.

We have know all the ingredients needed to compute the operators.

7 Elastic form factor of nuclei

If we consider the interaction of an electromagnetic probe (i.e. an electron) with a nucleus we can
assume in first approximation that this is mediated by a single photon. A common and widely used
approximation known as impulse approximation assumes that the photon interacts only with a nucleons
inside the nucleus. This interaction can be parametrized through the following operators:

• The charge operator given by

ρ(ω, q) =

A∑
i=1

[
Gp

E(Q
2)

(
1 + τ iz

2

)
+Gn

E(Q
2)

(
1− τ iz

2

)]
eiq·ri . (110)

• The current operator is given by

j(ω, q) =
1

2m

A∑
i=1

[
Gp

E(Q
2)

(
1 + τ iz

2

)
+Gn

E(Q
2)

(
1− τ iz

2

)]
eiq·ri(q − 2i∇i)

− i

2m

A∑
i=1

[
Gp

M (Q2)

(
1 + τ iz

2

)
+Gn

M (Q2)

(
1− τ iz

2

)]
eiq·ri(q × σi)

where the functions Gi
E and Gi

M are the electric and magnetic form factors of the nucleons that in the
code will be parametrized as in Ref. [Kel04] and m is the nucleon mass. Clearly, other terms in the
currents appear too. Of particular interest are the one known as meson exchange currents or two-body
currents that implies that the photon interacts with the mesons exchanged by the nucleons.

7.1 Cross section and form factors

The elastic scattering of an electron on a nucleus is a process in which the final state of the nucleus
remain the same as the initial. The elastic scattering cross section then reads

dσ

dΩ
= 4πσMf

−1
rec

[
Q4

q4
F 2
L +

(
Q2

2q2
+ tan2 θe/2

)
F 2
T

]
, , (111)

where σM is the Mott cross section, q and Q are the electron three- and four-momentum transfers,
frec is the recoil correction frec = 1+ (2E/mA) sin

2 θe/2, E and θe are the electron initial energy and
scattering angle in the laboratory, and mA is the mass of the target nucleus. In the case of elastic
scattering, the electron energy transfer is ωel =

√
q2 +m2

A − mA The form factors FL and FT are
expressed in terms of reduced matrix elements (RMEs) of charge (CL), magnetic (ML), and electric
(EL) multipole operators defined as

F 2
L(q) =

1

2Ji + 1

∞∑
L=0

|⟨Jf∥CL(q)||Ji⟩|2

F 2
T (q) =

1

2Ji + 1

∞∑
L=1

[
|⟨Jf∥ML(q)∥Ji⟩|2 + |⟨Jf∥EL(q)∥Ji⟩|2

] (112)
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where in the elastic electron-scattering the EL operator vanish because of time reversal invariance.
Our goal for the lectures is to compute the longitudinal and transverse form factor. To do so we need
to find the relations that connect the operator matrix elements with the multipole matrix element you
see here. This would require another full lecture. Here we just give the final formulas for the current

⟨JJ ;q|jy(q)|JJ⟩ =
√
4π
∑
L≥1

iL+1 ⟨J, J J,−J |L, 0⟩√
L(L+ 1)

P 1
L(cos θ)⟨J ||ML(q)||J⟩ , (113)

where P 1
L(x) are the associated Legendre functions and θ is the angle between q and the z-axis defined

by the polarization of the nucleus. For the charge we have

⟨JJ ;q|ρ(q)|JJ⟩ =
√
4π

∞∑
L=0

iL⟨J, J J,−J |L, 0⟩PL(cos θ)⟨J | |CL(q)| |J⟩, (114)

where PL(x) are the Legendre polynomials. As you can see the matrix elements are computed with
the nucleus polarized along the z-axis with Jz = J .

For the deuteron we have J = 1 so we have

⟨11;q|jy(q)|11⟩ = −
√
πP 1

1 (cos θ)M1(q) , (115)

where we shorten the notation for the multipoles. Selecting q = qx̂ we have θ = π/2 and P 1
1 (0) = −1

from which we have

M1(q) =
1√
π
⟨11;q|jy(qx̂)|11⟩, . (116)

At the same time the charge operator matrix element reads

⟨11;q|ρ(q)|11⟩ = −
√

4π

3

(
P0(cos θ)C0(q) +

1√
2
P2(cos θ)C2(q)

)
. (117)

To separate the two components we need then to chose two different angles for example we can chose
q = qẑ and so cos θ = 1

⟨11;q|ρ(qẑ)|11⟩ = −
√

4π

3

(
C0(q)−

1√
2
C2(q)

)
, (118)

and q = qx̂ and so cos θ = π/2 that gives

⟨11;q|ρ(qx̂)|11⟩ = −
√

4π

3

(
C0(q) +

1

2
√
2
C2(q)

)
. (119)

Inverting the formulas we obtain then

C0(q) =
1√
12π

(⟨11;q|ρ(qẑ)|11⟩+ 2⟨11;q|ρ(qx̂)|11⟩) (120)

C2(q) =

√
2

3π
(⟨11;q|ρ(qx̂)|11⟩ − ⟨11;q|ρ(qẑ)|11⟩) . (121)

Computing then the matrix elements using the Monte Carlo techniques we can then obtain the longi-
tudinal and transverse form factors exploiting these formulas.
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