

Tracking Performance with Background

Shujie Li

ePIC Tracking WG @ EICUG 2025

Newport News, VA, July 16, 2025

ePIC Tracking System

Central Tracker

See detector reports from ePIC R&D Day

Silicon Vertex Tracker (SVT)

SVT Geometry in Simulation

- DD4hep : Geant4-based detector description and particle propagation through materials and magnetic field.
 - Sensitive detector:
 - Segmentations (2d or 3d grids) to reflect for spatial resolution through digitization.
 - generate detector hits:
 - position, cell ID, time, energy deposit
 - Other structures and materials:
 - multiple scattering, Secondary particles, ...
 - **Geometry Implementation:**
 - Use TGeo shape (box, trapezoid, cylinder, ...) to describe detector element \rightarrow assemble elements to layers \rightarrow assign position, materials etc
 - Have to pass BOTH Geant4 and ACTS overlap check
 - More geometry details/shapes \rightarrow slower simulation

Check detector design details from the <u>DAC meeting</u>. And implementation in simulation from <u>SVT</u>, <u>TOF</u>, and <u>MPGD</u> working groups. **Near term priority:** major geometry updates on SVT (IB and EIC-LAS), MPGD and TOF (strip), and integation of support / service structures.

SVT Geometry in Simulation

- In-house developed <u>ElCrecon</u> framework for digitization, track and particle reconstruction, and analysis
 - ➢ Use <u>ACTS</u> for tracking:
 - Navigate track propagation through onion-like (endcap-barrel-endcap) tracking hierarchy.
 - Detector volumes are reduced to representing surfaces to speed up track reconstruction.

■ Materials are projected to selected surfaces, e.g. at the entrance and exit boundaries of sensitive surfaces ← this information is provided with a pre-generated **material map**, will NOT consider any dd4hep materials otherwise.

WARNING: material map needs to be updated whenever ANY structure within the tracking volume is modified

Longer term priority: include time info from TOF and MPGD for tracking

> Core tracking algorithm: Combinatorial Kalman Filter (CKF):

- Initial guess from an orthogonal seed finder which forms triplet with hits from five SVT layers.
- Combined track finding and fitting
- Demonstrated to handle high multiplicity tracking. Works well with 5+ hits.
 - Expect to have **5-8 hits per particle** with the current tracker design.
 - Hits which deviate from projected track will be rejected by chi2 (residual weighted by resolution and material effects) cut.

Single Particle Tracking Performance

- Source events:
 - Uniformly distributed single pion+ event at fixed momentum
- Observables:
 - Efficiency: fraction of qualified generated tracks that are reconstructed
 - **Purity**: for a given reconstructed track, the fraction of used hits from the same initial particle.
 - Resolutions at vertex: dp/p, theta, phi, DCAr

sigma=0.457382, err=0.0181962

60

40

20

-0.80 < eta < -0.70 in eicrecon eta -1 to 1 2GeV

δp/p [%]

Tracking Layer Impact Study

Concern:

What if a particle doesn't leave hit on a specific tracking layer for any reason?

Simulation setting:

Don't use hits from that layer in track reconstruction while keep the geometry and materials in DD4hep simulation.

Example:

dp/p (%) with disabled **SVT Barrel layer** (L0 to L4 that covers -0.9 < eta < 0.9):

12

Tracking Study with Realistic Environment

Concern:

Noise hits can impact our tracking purity and efficiency. **Simulation setting:**

SVT: randomly generate fake hit in digitization. TOF: noise injection in charge-sharing/ clustering

Tracking Layer Material Thickness Study

The nominal SVT thickness per layer:

- Si Vertex barrel: 0.05%
- Si Outer Barrel: 0.25 0.55%
- Si disk: 0.24%

More materials from service, support structure etc will induce more rescattering

In single particle simulation, double the thickness of each layer to check the impact on reconstructed resolution

Tracking Layer Material Thickness Study

Tracking Study with Realistic Environment

Concern:

How well can our device and tracking algorithm perform with **beam background** Simulation setting:

Performance study with signal+background merged event

• Reconstructed events from DIS+background, and minbias+background are <u>available</u> in the recent simulation campaign

Beam Background Impact at Hit Level

Hits from charged beam particles:

plot digitized hits (edep > 0.54 keV) for each SVT surface \rightarrow check number of hits per 2cm x 2cm square (size of RSU)

 \rightarrow show result in **ms** (500 x 2us slices)

Hits distribution on disks

- x v.s. y, one square = one RSU
- First Hadron disk : max=135 hits / ms
- All disk hits:
 - distributions are similar: high density near the beampipe
 - Max hits=195/ms on H-disk 3

Beam Background Impact at Hit Level

Hits from charged beam particles:

plot digitized hits (edep > 0.54 keV) for each SVT surface \rightarrow check number of hits per 2cm x 2cm square (size of RSU)

 \rightarrow show result in **ms** (500 x 2us slices)

Hits distribution on Barrels:

- Rphi v.s. Z, one square = one RSU
- L0 : max=63 hits / ms
- All barrels:
 - L0 and L1 get similar hit density
 - Number reduced quickly to <10 on L2 and further

L0

39	68	42	39	48	44	54	44	53	45	49	43	44	25
23	43	41	34	39	38	35	56	56	55	59	57	66	50
29	34	35	38	40	55	51	32	36	42	43	33	46	30
24	29	37	44	35	40	49	45	43	40	45	62	43	33
23	34	40	47	55	40	40	43	38	36	46	43	49	40
28	43	55	49	57	58	63	51	56	62	52	56	49	39
50	52	46	53	44	51	45	36	59	59	81	40	47	46
24	33	37	32	42	37	47	45	38	34	28	26	32	32
25	24	25	29	29	40	43	44	48	40	38	35	37	36
27	33	32	41	34	35	33	33	40	42	46	62	50	40
21	34	44	49	48	47	43	48	56	38	52	45	52	40
24	27	31	38	49	42	47	32	38	38	51	33	33	35

Beam Background Impact at Hit Level

Secondary particles generated in DD4hep:

- generatorStatus==0 created by Geant4
- Widely distributed across detectors
- not likely to generate tracks due to low energy (0/1000 events), mostly stop at the immediate surface and leave a hit
- ~700 particles \rightarrow hits per 2us

Beam Background Impact at Track Level

• Match trajectory to simulated particles

Efficiency: fraction of primary particles that are associated with tracks. **Purity**: for a given track, fraction of hits from one particle.

Event sample inspection

• Basic particle selection:

- Primary (un)decayed particle:
 - generatorStatus==xxx1 or xxx2
 - Charged
- Momentum > 0.5 GeV
- -4<eta<4

- Vertex.r<1mm, abs(Vertex.z)<100mm
- Particle endpoint outside of a barrel with
 - -850<z<1000mm (4th endcap disk)
 - r<270mm (L3 barrel)

So that it has high chance to go through 4 layers

Purity and Efficiency: DIS (forced) + background sample

Purity and Efficiency: DIS only sample

Background study plan

- Update tracking geometry
 - Need inputs on the detector shape, as well as service/support structures.
- Tracking algorithm optimization
- Quantities to check:
 - Track resolution at vertex
 - Integrated study of angular resolution projected to PID detectors e.g. hpDIRC, see studies from <u>DIRC</u>, <u>TOF</u> and <u>MPGD</u>
 - Displaced vertex
 - ⇒ Background+noise study
 - SVT + TOF / MPGD impact study
 - Include BIC

Thanks!