

Intro & DSC Requirements

EIC UGM 2025, Software Interface for Test Beams/Benches Martin Purschke, Dmitry Kalinkin, Derek Anderson

Introduction | Software to Readout Interface

- Workfest goal: prepare a demonstrator analysis chain going from data readout to final chain using our software ecosystem
- Important exercise for several reasons
 - 1) We want to support users at test beams,
 - 2) This helps us practice using our software in real data taking
 - 3) And encourages users to start practicing with software
- The earlier we can start with these, the better!

	Discussion	
	Auditorium, Thomas Jefferson National Accelerator Facility	09:30 - 09:55
10:00	Coffee Break	
	Auditorium, Thomas Jefferson National Accelerator Facility	09:55 - 10:15
	Overview of DSC Requirements and Tools	Derek Anderson
	Auditorium, Thomas Jefferson National Accelerator Facility	10:15 - 10:45
	DAQ Experience 1: RCDAQ	Martin Purschke
	Auditorium, Thomas Jefferson National Accelerator Facility	10:45 - 11:00
11:00	DAQ Experience 2: CODA/JLAB	Vardan Gyurjyan
	Auditorium, Thomas Jefferson National Accelerator Facility	11:00 - 11:15
	DAQ Experience 3: nestDAQ/SPADI	Nobuyuki Kobayashi
	Auditorium, Thomas Jefferson National Accelerator Facility	11:15 - 11:30
	Discussion	
	Auditorium, Thomas Jefferson National Accelerator Facility	11:30 - 12:00

12:00

Introduction | Software to Readout Interface

Two halves to workfest:

- Morning session of talks (see right): to gather input on demonstrator requirements
 - Input from DSCs (this talk)
 - And experience using past DAQ frameworks
- 2) A hackathon at 6 pm tonight in the CEBAF Center lobby: to code up demonstrator
- Pizza will be provided at the hackathon!

	Discussion	
	Auditorium, Thomas Jefferson National Accelerator Facility	09:30 - 09:55
10:00	Coffee Break	
	Auditorium, Thomas Jefferson National Accelerator Facility	09:55 - 10:15
	Overview of DSC Requirements and Tools	Derek Anderson
	Auditorium, Thomas Jefferson National Accelerator Facility	10:15 - 10:45
	DAQ Experience 1: RCDAQ	Martin Purschke
	Auditorium, Thomas Jefferson National Accelerator Facility	10:45 - 11:00
11:00	DAQ Experience 2: CODA/JLAB	Vardan Gyurjyan
	Auditorium, Thomas Jefferson National Accelerator Facility	11:00 - 11:15
	DAQ Experience 3: nestDAQ/SPADI	Nobuyuki Kobayashi
	Auditorium, Thomas Jefferson National Accelerator Facility	11:15 - 11:30
	Discussion	
	Auditorium, Thomas Jefferson National Accelerator Facility	<u> 11:30 - 12:00</u>

12:00

Introduction | This Talk

- This talk: review & discuss setups used by DSCs
 - What DAQ frameworks were used?
 - o What software tools were used?
 - Did (or do) they have any software requirements?
- Received Input from 3 DSCs:
 - o BIC
 - LFHCAL/EEEMCal
- Open discussion afterwards
 - $\circ~$ We want to hear from you!

	Discussion	
	Auditorium, Thomas Jefferson National Accelerator Facility	09:30 - 09:55
10:00	Coffee Break	
<u>г</u>	Auditoriani, Thomas Concision Mational Audolovation Facility	00.00 10.10
	Overview of DSC Requirements and Tools	Derek Anderson
	Auditorium, Thomas Jefferson National Accelerator Facility	10:15 - 10:45
	DAQ Experience & RODAQ	Martin Pursshirs
	Auditorium, Thomas Jefferson National Accelerator Facility	10:45 - 11:00
11:00	DAQ Experience 2: CODA/JLAB	Vardan Gyurjyan
	Auditorium, Thomas Jefferson National Accelerator Facility	11:00 - 11:15
	DAQ Experience 3: nestDAQ/SPADI	Nobuyuki Kobayashi
	Auditorium, Thomas Jefferson National Accelerator Facility	11:15 - 11:30
	Discussion	
	Auditorium, Thomas Jefferson National Accelerator Facility	11:30 - 12:00

12:00

Electronics and DAQ I: PICO-DAQ and RDO status, joint with Software Interface to Readout for Test Beams and Benches Input from BIC

Bobae Kim and Maria Żurek Argonne National Laboratory

Choice of tools

Hardware

What tools have been used so far:

- Calorimeter prototype (Baby BCAL) readout with SiPMs and 250 MHz fADC (JLab style) with CODA-based readout.
- Current tests of the AstroPix-SciFi integration (see slide 3)
 - AstroPix setup with GECCO board and Xilinx FPGA, synchronized with Baby BCAL through the LVDS MISO signals that generated from AstroPix used as trigger IN for CODA-based DAQ (challenging for many reasons)
 - Baby BCAL triggered by analog signal from one pixel of AstroPix
- Integration with the HGCROC planned (see slide 8)

Software

Our FTBF prototype geometry implemented in dd4hep. Currently in the fork: <u>https://github.com/richardsj-anl/epic</u> Geometry implementation

System Testing for Integration (2)

Synchronization Plan between AstroPix DAQ and HGCROC for Pb/SciFi

Provide 40 MHz external clock to HGCROCs and AstroPix DAQ .

Xilinx KCU

(from Tristan)

GECCO board + Nexvs + ASTEP sw/fw

- LVDS external clock used
- Both 10MHz Timestamp and the FPGA timestamp external (10MHz+40MHz)

AstroPix v3 single chip

GECCO board

ASTEP-HW

- Bit file exists but needs debugging;
- AstroPix quad-chip / 9-chip module + ASTEP HW board + CMOD + ASTEP sw/fw
 - single-ended clock required
 - FPGA Timestamp external (40 MHz)

System Testing for Integration (1)

WHAT HAVE WE TRIED SO FAR

AstroPix+BabyBCAL @Beam test (June 2024)

 Baby BCAL triggered by analog signal from one pixel of AstroPix

*Example plot of 120 GeV proton event display from an integrated system of Baby BCAL and a single-layer AstroPix v3 chip by Henry Klest

AstroPix+SFILs @Bench test

• Thin Pb/SciFi layers with new SiPMs and optical cookies commissioned on bench.

DSC Needs

Hardware

- Switching to HGCROC: initial studies done, work on AstroPix-HGCROC (Baby BCAL) sync in progress
- Challenge: from our experience CODA is not very well documented, lots of "internal" knowledge needed, that makes setting up DAQ challenging

Software

• How do we want to maintain the prototype geometries in the ePIC repo? We can dedicate workforce to move the baby BCAL implementation, but it would be useful to have an example.

Electronics and DAQ I: PICO-DAQ and RDO status, joint with Software Interface to Readout for Test Beams and Benches Input from LFHCAL/EEEMCal

Test beam setup

LFHCal @ CERN PS

EEEMCal @ DESY II

Basic setup

- Xilinx KCU
 - FPGA to interface between between DAQ/slow controls and ASIC
- Protoboard
 - Contains 2 ASICs, breaks out IO
- Clock
 - 40 MHz dual edge clock
 - Common to all KCU used in test beam
- Trigger board (Not shown)
 - Duplicates and distributes trigger to all KCU

Protoboard 2.0 with two H2GROC3A

> Xilinx **KCU**

7/16/202

12

Protzmar

Software

Running the DAQ

- Enable/disable bias from High Voltage tab
- Select external trigger, delay, and number of samples
- Three run modes
 - Number of events
 - Duration
 - Manual start/stop
- Can automatically start the online monitoring
 - Check the box and select the folder with the compiled code

		H2GDAQ		
DAQ	Working Folder	Generator Debug		DAQ + Generator START/STO
	/Users/tristan/epic/hgcroc/H2GDAQ	Data Collection		DAQ Push
	Select Folder Print to Terminal	Data Coll En[7:0]	0 0	Start Generator
	Online Monitoring	Trig Coll En[7:0]	0 🗘	Stop Generator
	Run Monitoring	Generator Gen Preimp En		High Voltage Reset/Adj
	Select Monitoring Folder	Gen Pre Int	0 0	nigh tonage neset/ng
		Gen Nr Cycles	0	F0 A0 A1
	DAQ Settings (1)	Gen Interval	0	
	event 1 time [sec] 1 Imanual	External Trigger Ext Trg En Ext Trg Delay Ext Trg DeadT Fast Command		
	Reset Pack Counter	DAQ FCMD	• •	
	Run Number 65	DAQ Push FCMD	0 0	
	Data Count byte	Gen Pre FCMD	0 0	
	Auto Phase Scan	Gen FCMD	0 🗘	
	Set IODELAY	Machine Gun	0 🗘	
	Start DAQ			
		Send Gen Config before DAQ		
	Stop DAQ	Send Gen Config		Send HV Settings

Protzman 7/16/202 14

Online monitoring

- Real time decoding of events
- Implemented as webserver accessible from any browser
- Easy-ish to develop detector specific visualizations
- ADC, ToA, ToT spectra
 - Very helpful to make sure pedestals look correct
- Tracks events and packets from each ASIC
- Does not do event alignment
 - I could be convinced to add this though

EEEMCal @ DESY II

DSC Needs

Hardware

- Will same DAQ be used for the 2025 CERN test beams?
- Event alignment was (is) a significant challenge

Software

• Where does processing with ElCrecon begin? Raw data? Data after some processing?

