

# RDO concept

### Miklos Czeller, Gabor Nagy

### Norbert Novitzky

ORNL is managed by UT-Battelle LLC for the US Department of Energy





### Goals for the Readout Board

#### **Design a versatile Readout Board to be used in all detectors:**

- Collection of the data from FEB's
- Aggregation of data
- Suitable for the streaming data acquisition
- Adaptable for all detectors
  - Design and support will be kept in the collaboration

#### **Constraints:**

- Price, based on the Artix Ultrascale+ family
- Scalable to larger systems
- Size for some of the detectors



### FPGA choices

#### **Basic choice is the Artix Ultrascale+ family:**

- ~300-500\$
- Long-term availability (in the next decade)
- Scalability of the system:
  - From Artix even up to the Kintex capability

| Ultra     | 30    | ale            | ; A      | I C     |       | le    | Cl    | u     | е     |       | ng    | 10   | ll   | <b>O</b> I |       | d     |       | e     |       |       |        |        |
|-----------|-------|----------------|----------|---------|-------|-------|-------|-------|-------|-------|-------|------|------|------------|-------|-------|-------|-------|-------|-------|--------|--------|
| Footprint | Artix | <b>κ™ Ultr</b> | aScal    | e+™     |       | Kin   | tex™  | Ultra | aSca  | le™   |       |      | Kint | ex U       | ItraS | cale+ |       |       | Vi    | rtex⊺ | ™ Ultr | raScal |
| rootprint | AU7P  | U10P AU1       | 5P AU206 | P AU25P | KU025 | KU035 | KU040 | KU060 | KU085 | KU095 | KU115 | KU3P | KU5P | KU9P       | KU11F | KU13F | KU15P | VU065 | VU080 | VU095 | VU125  | VU160  |
| A289      |       |                |          |         |       |       |       |       |       |       |       |      |      |            |       |       |       |       |       |       |        |        |
| A368      |       |                | I        |         |       |       |       |       |       |       |       |      |      |            |       |       |       |       |       |       |        |        |
| B484      |       |                |          |         |       |       |       |       |       |       |       |      |      |            |       |       |       |       |       |       |        |        |
| C484      |       |                |          |         |       |       |       |       |       |       |       |      |      |            |       |       |       |       |       |       |        |        |
| A784      |       |                |          |         |       |       |       |       |       |       |       |      |      |            |       |       |       |       |       |       |        |        |
| B784      |       |                |          |         |       |       |       |       |       |       |       |      |      |            |       |       |       |       |       |       |        |        |
| A676      |       |                |          |         |       |       | -     |       |       |       |       | -    | -    |            |       |       |       |       |       |       |        |        |
| B676      |       |                |          |         |       |       |       |       |       |       |       |      |      |            |       |       |       |       |       |       |        |        |
| A900      |       |                |          |         |       |       |       |       |       |       |       |      |      |            |       |       |       |       |       |       |        |        |
| D900      |       |                |          |         |       |       |       |       |       |       |       |      |      |            |       |       |       |       |       |       |        |        |
| E900      |       |                |          |         |       |       |       |       |       |       |       |      |      |            |       |       |       |       |       |       |        |        |
| A1156     |       |                |          |         |       |       |       | -     |       | -     |       |      |      |            |       |       |       |       |       |       |        |        |
| A1365     |       |                |          |         |       |       |       |       |       |       |       |      |      |            |       |       |       |       |       |       |        |        |
| A1517     |       |                |          |         |       |       |       |       | -     |       |       |      |      |            |       |       |       |       |       |       |        |        |
| C1517     |       |                |          |         |       |       |       |       |       |       |       |      |      |            |       |       |       | ╞═╴   |       |       |        |        |
| D1517     |       |                |          |         |       |       |       |       |       |       |       |      |      |            |       |       |       |       | -     | -     | -      |        |
| E1517     |       |                |          |         |       |       |       |       |       |       |       |      |      |            |       |       |       |       |       |       |        |        |
| A1760     |       |                |          |         |       |       |       |       |       |       |       |      |      |            |       |       |       |       |       |       |        |        |
| B1760     |       |                |          |         |       |       |       |       |       |       |       |      |      |            |       |       |       |       |       |       |        |        |

#### e Saala Arabitaatura Miaratian Tabla





#### The footprints of the selected FPGA's are the same:

- B676 1mm pitch
- B784 0.8mm pitch

The pitch correlates with the size and cost (complexity) of the PCB The large FPGA family coverage in the footprint enables to have interchangeable designs



### FPGA consideration

#### B676 Package, 1mm pitch

| #  | Part Number       | Unit<br>Price \$ | Logic<br>Cells | DSP  | 36K | HP  | HD | GTH<br>GTY | PCle<br>Gen/Lane |
|----|-------------------|------------------|----------------|------|-----|-----|----|------------|------------------|
| 11 | XCAU10P-1FFVB676E | 185              | 96 250         | 400  | 100 | 156 | 72 | 12         | 4/4, 3/8         |
| 13 | XCAU10P-2FFVB676E | 259              | 96 250         | 400  | 100 | 156 | 72 | 12         | 4/4, 3/8         |
| 15 | XCAU15P-1FFVB676E | 231              | 170 100        | 576  | 144 | 156 | 72 | 12         | 4/4, 3/8         |
| 17 | XCAU15P-2FFVB676E | 324              | 170 100        | 576  | 144 | 156 | 72 | 12         | 4/4, 3/8         |
| 19 | XCAU20P-1FFVB676E | 334              | 238 437        | 900  | 200 | 156 | 72 | 12         | 4/8              |
| 21 | XCAU20P-2FFVB676E | 467              | 238 437        | 900  | 200 | 156 | 72 | 12         | 4/8              |
| 23 | XCAU25P-1FFVB676E | 398              | 308 437        | 1200 | 300 | 208 | 72 | 12         | 4/8              |
| 25 | XCAU25P-2FFVB676E | 557              | 308 437        | 1200 | 300 | 208 | 72 | 12         | 4/8              |
| 27 | XCKU3P-1FFVB676E  | 1 405            | 355 950        | 1368 | 360 | 208 | 72 | 16         | 4/8              |
| 29 | XCKU3P-2FFVB676E  | 2 054            | 355 950        | 1368 | 360 | 208 | 72 | 16         | 4/8              |
| 31 | XCKU5P-1FFVB676E  | 2 055            | 474 600        | 1824 | 480 | 208 | 72 | 16         | 4/8              |
| 33 | XCKU5P-2FFVB676E  | 2 731            | 474 600        | 1824 | 480 | 208 | 72 | 16         | 4/8              |

#### B784 Package, 0.8mm pitch

| #  | Part Number       | Unit     | Logic   | DSP  | 36K | HP  | HD | GTY | PCle     |
|----|-------------------|----------|---------|------|-----|-----|----|-----|----------|
|    |                   | Price \$ | Cells   |      |     |     |    |     | Gen/Lane |
| 19 | XCAU20P-1SFVB784E | 305      | 238 437 | 900  | 200 | 156 | 72 | 12  | 4/8      |
| 21 | XCAU20P-2SFVB784E | 428      | 238 437 | 900  | 200 | 156 | 72 | 12  | 4/8      |
| 23 | XCAU25P-1SFVB784E | 388      | 308 437 | 1200 | 300 | 208 | 96 | 12  | 4/8      |
| 25 | XCAU25P-2SFVB784E | 543      | 308 437 | 1200 | 300 | 208 | 96 | 12  | 4/8      |
| 27 | XCKU3P-1SFVB784E  | 1 466    | 355 950 | 1368 | 360 | 208 | 96 | 16  | 4/8      |
| 29 | XCKU3P-2SFVB784E  | 2 054    | 355 950 | 1368 | 360 | 208 | 96 | 16  | 4/8      |
| 31 | XCKU5P-1SFVB784E  | 1 976    | 474 600 | 1824 | 480 | 208 | 96 | 16  | 4/8      |
| 33 | XCKU5P-2SFVB784E  | 2 768    | 474 600 | 1824 | 480 | 208 | 96 | 16  | 4/8      |

- AMD UltraScale+ GTH (16.3Gb/s): Low power & high performance for the toughest backplanes - AMD UltraScale+ GTY (32.75Gb/s): Maximum NRZ performance for the fastest optical and backplane applications;

33G transceivers for chip-to-chip, chip-to-optics, and 28G backplanes

- https://www.amd.com/en/products/adaptive-socs-and-fpgas/technologies/high-speed-serial.html



- Difference is in the number of logic cells
  - Depends on the application, e.g. CALOROC we plan the XCAU20P-2...
- DSP capabilities, buffering, clocking
- GTH/GTY = 16.3 Gbps/32.72 Gbps
- Availability:
  - Xilinx/AMD is trusted and long lasting. Typical availability is ~15 years (Ultrascale+ extended 2045)
- 100+ HP/HD pins enables interfacing many different FEB options
- High speed GTx pins would be for LpGBT communication (10Gbps)

Conclusion:

B676 footprint would be the winner (unless space is a constraint), 1mm pitch helps with the PCB price also and easier production



### Basic idea – mother/daughter boards





### Basic idea – mother/daughter boards





#### Mother board:

- User specific (or detector specific)
  - Depends highly on the need of a detector
- All connections to the FEB
- All connections to the DAM boards
  - SFP+, firefly or FMC with module
- Power distribution
- Low and high complexity on the clock distribution
- Compatible with the daughter cards

#### **Daughter board:**

- Same for every card, interchangeable with different FPGA
- 676 pin package
- 12-16 GTx
- 50+ differential pairs, HP
- 20+ single ended wire, HD
- On board memory (DDR4, optional)
- System controller on the board
- 12 V power input

### Proposed daughter boards

#### Version A - two connector design 62x54mm





2 connector version, contains 2x independent DDR4 memory chips

46 HP differential pairs, 46x max 1250Mbps 12 MGT, 12x 16.3 Gbps Ideal for aggregation tasks



#### Version B - three connector design 62x54mm



3 connector version, contains 1 independent DDR4 memory chips

46+24 HP differential pairs, 70x max 1250Mbps 12 MGT, 12x 16.3 Gbps Ideal for interfacing with ASICs





### First version of the RDO



distribution under the module



#### This version of the board is the first test article:

- Compatible with all the DB previously
- Develop the required DAM-RDO interface IP
- User IP can be developed by all the detector groups:
  - We could provide support
- Fast production (can be readily available soon)
- Cost effective board to start real detector applications

### Different daughter board proposals











Some other ideas of the mother boards, these are just conceptual

We would leave the mother board in the hand of the detector people, depending what FEB they are connecting to



### Specific proposal for Calorimetry (using the CALOROC)



|          | 2 Con.      | 3 Con.      |
|----------|-------------|-------------|
|          | Version     | Version     |
|          | 46 HP Diff. | 70 HP Diff. |
|          | 5           | 8           |
| CLK      | 6           | 10          |
|          | 7           | 11          |
| CLK, TC9 | 9           | 14          |
|          |             |             |

## Slow Control (Software)

|            |                                                |      |                  |                      |                          | H2                       | GConfig                  |                          |                          |                          |  |  |  |  |
|------------|------------------------------------------------|------|------------------|----------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--|--|--|--|
| PGA        | 0                                              |      |                  |                      |                          |                          |                          |                          |                          |                          |  |  |  |  |
| SIC        | ASIC 1                                         |      |                  |                      |                          |                          |                          |                          |                          |                          |  |  |  |  |
| Robot Mode | Top Register                                   | ^    |                  | Register: Channel_54 |                          |                          |                          |                          |                          |                          |  |  |  |  |
| ſ          | Тор                                            |      | Bit 7            | Bit 6                | Bit 5                    | Bit 4                    | Bit 3                    | Bit 2                    | Bit 1                    | Bit 0                    |  |  |  |  |
| - 1        | Global Analog Register:<br>Global Analog 1     | Byte | Gain_conv<<br>1> | Gain_conv<<br>0>     | Inputdac<5>              | Inputdac<4>              | Inputdac<3>              | Inputdac<2>              | Inputdac<1>              | Inputdac<0>              |  |  |  |  |
|            | Global Analog 0                                | Θ    | Θ                | 0                    | 0                        | 0                        | 0                        | 0                        | 0                        | Θ                        |  |  |  |  |
|            | Reference Voltage Regi:<br>Reference Voltage_1 | Byte | trim_toa<5>      | trim_toa<4>          | trim_toa<3>              | trim_toa<2>              | trim_toa<1>              | trim_toa<0>              | sel_trig_t<br>oa         | mask_toa                 |  |  |  |  |
|            | Reference_Voltage_0                            | 1    | 0                | 0                    | 0                        | 0                        | Θ                        | Θ                        | 0                        | Θ                        |  |  |  |  |
|            | Master TDC Registers -                         | Byte | trim_tot<5>      | trim_tot<4>          | trim_tot<3>              | trim_tot<2>              | trim_tot<1>              | trim_tot<0>              | NA                       | NA                       |  |  |  |  |
| ſ          | Master_TDC_1                                   | 2    | Θ                | Θ                    | 0                        | Θ                        | 0                        | 0                        | 0                        | Θ                        |  |  |  |  |
|            | Master_TDC_0                                   | Byte | trim_inv<5>      | trim_inv<4>          | trim_inv<3>              | trim_inv<2>              | trim_inv<1>              | trim_inv<0>              | probe_noinv              | probe_inv                |  |  |  |  |
|            | Digital Half Registers                         | 3    | 0                | 0                    | 0                        | 0                        | 0                        | 0                        | 0                        | Θ                        |  |  |  |  |
|            | Digital_Half_1<br>Digital_Half_0               | Byte | probe_toa        | probe_tot            | mask_tot                 | sel_trig_t<br>ot         | Channel_off              | HighRange                | LowRange                 | probe_pa                 |  |  |  |  |
|            | Channel Wise Registers                         | 4    | 0                | 0                    | 0                        | 0                        | Θ                        | Θ                        | 1                        | Θ                        |  |  |  |  |
| (          | CM_2 CM_3<br>Channel_36 Channel_37             | Byte | mask_adc         | NA                   | DAC_CAL_CT<br>DC_TOT<5>  | DAC_CAL_CT<br>DC_TOT<4>  | DAC_CAL_CT<br>DC_TOT<3>  | DAC_CAL_CT<br>DC_TOT<2>  | DAC_CAL_CT<br>DC_TOT<1>  | DAC_CAL_CT<br>DC_TOT<0>  |  |  |  |  |
|            | Channel_38 Channel_39                          | 5    | Θ                | Θ                    | 0                        | 0                        | Θ                        | 0                        | 0                        | Θ                        |  |  |  |  |
|            | Channel_40 Channel_41<br>Channel 42 Channel 43 | Byte | HZ_inv           | HZ_noinv             | DAC_CAL_CT<br>DC_TOA<5>  | DAC_CAL_CT<br>DC_TOA<4>  | DAC_CAL_CT<br>DC_TOA<3>  | DAC_CAL_CT<br>DC_TOA<2>  | DAC_CAL_CT<br>DC_TOA<1>  | DAC_CAL_CT<br>DC_TOA<0>  |  |  |  |  |
|            | Channel 44 Channel 45                          | 6    | Θ                | Θ                    | 0                        | 0                        | 0                        | 0                        | 0                        | Θ                        |  |  |  |  |
|            | Channel_46 Channel_47                          | Byte | NA               | NA                   | DAC_CAL_FT<br>DC_TOT<5>  | DAC_CAL_FT<br>DC_TOT<4>  | DAC_CAL_FT<br>DC_TOT<3>  | DAC_CAL_FT<br>DC_TOT<2>  | DAC_CAL_FT<br>DC_TOT<1>  | DAC_CAL_FT<br>DC_TOT<0>  |  |  |  |  |
|            | Channel_48 Channel_49<br>Channel 50 Channel 51 | 7    | 0                | 0                    | 0                        | 0                        | 0                        | 0                        | 0                        | Θ                        |  |  |  |  |
|            | Channel_50 Channel_51<br>Channel_52 Channel_53 | Byte | NA               | NA                   | DAC_CAL_FT<br>DC_TOA<5>  | DAC_CAL_FT<br>DC_TOA<4>  | DAC_CAL_FT<br>DC_TOA<3>  | DAC_CAL_FT<br>DC_TOA<2>  | DAC_CAL_FT<br>DC_TOA<1>  | DAC_CAL_FT<br>DC_TOA<0>  |  |  |  |  |
|            | Channel_54 Channel_55                          | 8    | 0                | 0                    | 0                        | 0                        | 0                        | 0                        | 0                        | 0                        |  |  |  |  |
|            | Channel_56 Channel_57<br>Channel_58 Channel_59 | Byte | NA               | NA                   | IN_FTDC_EN<br>CODER_TOA< | IN_FTDC_EN<br>CODER_TOA< | IN_FTDC_EN<br>CODER_TOA< | IN_FTDC_EN<br>CODER_TOA< | IN_FTDC_EN<br>CODER_TOA< | IN_FTDC_EN<br>CODER_TOA< |  |  |  |  |
| (          | Channel_60 Channel_61                          |      |                  |                      | 5> _                     | 4> _                     | 3> _                     | 2> _                     | 1> _                     | 0> _                     |  |  |  |  |
| (          | Channel_62 Channel_63                          | 9    | 0                | Θ                    | 0                        | Θ                        | 0                        | 0                        | 0                        | 0                        |  |  |  |  |
|            | Channel_64 Channel_65<br>Channel_66 Channel_67 | Byte | DIS_TDC          | NA                   | IN_FTDC_EN<br>CODER_TOT< | IN_FTDC_EN<br>CODER_TOT< | IN_FTDC_EN<br>CODER_TOT< | IN_FTDC_EN<br>CODER_TOT< | IN_FTDC_EN<br>CODER_TOT< | IN_FTDC_EN<br>CODER_TOT< |  |  |  |  |
|            | Channel 68 Channel 69                          |      |                  |                      | 5>                       | 4>                       | 3>                       | 2>                       | 1>                       | 0>                       |  |  |  |  |

#### We already have a H2GCROC/DAQ setting software working with the KCU (RDO+DAM) and H2GCROC protoboards

• We can also adopt this software (based on python3) on the new RDO (+DAM also) and other ASICs too.



| _ □ ×<br>Current Config                                            | _   |                                 | H2GDAQ                       |         | _                         |  |  |  |  |
|--------------------------------------------------------------------|-----|---------------------------------|------------------------------|---------|---------------------------|--|--|--|--|
| GA selection: FPGA 0<br>IC selection: ASIC 0<br>Register Selection | DAQ | Working Folder                  | Generator Debug              |         | DAQ + Generator START/STO |  |  |  |  |
| Use half-wise registers                                            |     |                                 | Data Collecti                | on      | DAQ Push                  |  |  |  |  |
| Jse channel-wise registers<br>Config File Info                     |     | /home/epical/PythonCodes/       | Data Coll En[7:0]            | 3 \$    | Start Generator           |  |  |  |  |
| me/epical/PythonCodes/<br>Git/H2GConfig/config/<br>0.json          |     | NewGit/H2GDAQ                   | Trig Coll En[7:0]            | 0 \$    | Stop Generator            |  |  |  |  |
| Synced to File                                                     |     | Select Folder Print to Terminal | Generator                    | <br>V   | High Voltage Reset/Adj    |  |  |  |  |
|                                                                    |     | DAQ Settings                    | Gen PreImp En<br>Gen Pre Int | 16 \$   | Reserved                  |  |  |  |  |
|                                                                    |     |                                 | Gen Nr Cycles                | 1000    | ✓ F0 ✓ A0 ✓ A1            |  |  |  |  |
|                                                                    |     |                                 | Gen Interval                 | 100000  |                           |  |  |  |  |
|                                                                    |     | time [sec] 1                    | External Trigg               | ger     |                           |  |  |  |  |
|                                                                    |     | ✓ manual                        | Ext Trg En                   |         |                           |  |  |  |  |
|                                                                    |     |                                 | Ext Trg Delay                | 0       |                           |  |  |  |  |
|                                                                    |     |                                 | Ext Trg DeadT                | 255     |                           |  |  |  |  |
|                                                                    |     | Run Number 35                   | Fast Command                 | 75 🜲    |                           |  |  |  |  |
|                                                                    |     |                                 | DAQ Push FCMD                | 75 \$   |                           |  |  |  |  |
| Link Info                                                          |     | Data Count 8.46 MB              | Gen Pre FCMD                 | 45 \$   |                           |  |  |  |  |
| dress: 10.1.2.208<br>11000                                         |     | Set IODELAY                     | Gen FCMD                     | 75 \$   |                           |  |  |  |  |
| Ping FPGA<br>Send Current ASIC Config<br>Send All Configs          |     |                                 | Machine Gun                  |         |                           |  |  |  |  |
|                                                                    |     | Start DAQ                       | Machine Gun                  | 10 🌲    |                           |  |  |  |  |
|                                                                    |     |                                 | Send Gen Config befo         | ore DAQ |                           |  |  |  |  |
|                                                                    |     | Stop DAQ                        | Send Gen Conf                | ig      | Send HV Settings          |  |  |  |  |

### Summary

#### The RDO would be based on Artix Ultrascale+, with possible upgrade to Kintex Ultrascale+ (lower end) if there are some specialized needs

- Mother/daughter card design
  - All designs will be kept within the 'house'
- Mother card are detector specific:
  - In case of calorimeters (CALOROC LpGBT aggregator), it should be unified
  - Other detectors we could help with engineering
- Daughter card

  - Support for the RDO-DAM firmware communication
  - Help in RDO-FEB communication if needed

#### Time line:

- 80h of engineering time already went in to the daughter board, est. 80h more needed
- 80-100h for the first iteration of the daughter board
  - This can be an evaluation platform for many detectors (testbeam support)
  - Can help with more specialized daughterboard (e.g. two FMC for TOF)
- How many should we produce PED request



• Plan to have several of them, interchangeable depending on the scale of the detector and performance needed