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Motivation: CLVF " T
k
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* The e -> tau constraints currently still allow for the
EIC to probe new phase space ql
* Initial interest in the e -> tau conversions was on the D ‘\ >
three-pion decay mode due to its topological 2 X
signature
* Studies done by Jinlong Zhang indicate that this channel JHEP 03 (2021) 256
alone could increase the limits set by HERA by a factor of 2 nipsiffaniiv.ore/p/2102.08176.pdf
(at 100 fbt) and comparable to limits set by BABAR
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* Two decay modes offer different advantages
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ePIC detectors used in analysis

e The calorimeters are the
clear starting point for a
muon identification

 both calorimeters are
needed for the best
results

:
. \,, WC i GapTOF |

maging Sane clectron Dsrection 7T Suparconducting Soenok
ar racking
z ™ ﬂ‘ ' L)
e
N
Lo
.,.' &
a7 - B N : ’
- ! "

. ! . N > .
e l - . -~
\ pR— ,

} |“‘ 1\ 5
\ 4
) .

* The barrel region was the
focus of Andrew’s NN =
analysis \ WS g e

 a FWD and BWD analysis .

would be very useful in
the future
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ePIC simulations

* Only single particle
simulations were used to T T
determine the base e g N
identification algorithm "R

* The main “background” are
pions

* 100k mu & pisingle
particle sims were run with
the ddsim setup of ePIC

Barral Hadronie

* momentum between 1 and g
15 GeV (1 GeV steps) S

e theta 90° to 150° (10° steps)

* EICrecon used for
reconstructed variables
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ElICrecon

* The calorimeter
information has the most
discrimination power

* E/pis usedin line with
the electron ID efforts

* Energy weighted radius
(dispersion or shower
shape) provides
additional information
that we can use
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Log-likelihood

* Feed all this information (ECal, HCal, “1 HcalElp| = | Dispersion
dispersion) into a single variable that can be ol BB I | S
tuned for each analysis g

« Additional variables are easy to add into the EERTRL T sl
= mHCalE/lp] ™ = Dispersion

* The cut is on the log-likelihood of the Ipl=10GeV i Ip] =10 GeV
difference between your signal and .
background —— A

L;=In(£) = In(IT; p(q,)) = £In(p(q,)).

where j is the PID hypothesis (u or x in this case).

i is each reconstructed value used (e.g. HCal E/|p|).

p(q.) is the probability a track has a value q; for the given PID hypothesis

1
ancf reconstructed variable.
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Log- |||<e||hood 90 degree scattermg
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Log-likelihood results

Purity (F) vs Track Momentum (|p|)

Purity (F) vs Track Momentum (|p|) 1.1
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* The L,-L; >0 cut was used

* We can see that for high enough track mentum
we have a reasonable purity of pions

* we see degradation at larger scattering angles
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Purity (F) vs Track Momentum (|p|)

Conclusions '
. . . % 0.9
* Andrew did a great job showing to
that the current ePIC detector < os
seems to do a reasonable job % =
discriminating between pions and -
muons in the barrel region ~

* Looking at minbias events is needed N

* The CLFV models suggested by
Emmanuelle will be well tested by
ePIC

* We should extend this to the FWD
and BWD going regions

* Any suggestions for additional
variables to increase discrimination
power are most welcome
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