Physics Benchmarks for Low-Q2

Derek Glazier, Simon Gardner University of Glasgow

Intro - Types of LowQ2 Benchmarks

- 1) Detector Benchmarks <u>https://github.com/eic/detector_benchmarks</u>
 - A) Beamline Validation Benchmarks
 - use Geant4 particle gun
 - B) Detector Response and Reconstruction Benchmarks
 - mixed quasi-real photoproduction electrons
 - + Bremsstrahlung + backgrounds.
 - * Not presented here
- 2) Physics Benchmarks : <u>https://github.com/eic/physics_benchmarks</u>
 - A) Small sample to validate pull request
 - use 1000 p production events (elSpectro)
 - B) Simulation campaign data
 - use EPIC/RECO/*/q2_0to1/pythia_ep_noradcor_*

Detector Benchmarks

Beamline Benchmarks: <u>benchmarks/beamline</u> Validate Geometry updates in CI to ensure changes are understood. Run locally: In top level benchmark dir with sourced ePIC geometry by calling:

snakemake -cores 4 results/beamline/test/

Runs 2 simulations:

Beam Core

/gps/ang/type beam2d	
/gps/ang/sigma_x 0.0002017 rad # 201.7 urad	
/gps/ang/sigma_y 0.0001873 rad # 187.3 urad	
/gps/pos/type Beam	
/gps/pos/sigma_x 0.119 mm	
/gps/pos/sigma_y 0.0107 mm	
#/gps/energy 17.846 GeV	
/gps/energy 18 GeV	
/gps/particle e-	

Far-Backward Acceptance

/gps/ang/type beam2d /gps/ang/sigma_x 0.011 rad # 11 mrad /gps/ang/sigma_y 0.011 rad # 11 mrad /gps/pos/type Beam /gps/pos/sigma_x 0.119 mm /gps/pos/sigma_y 0.0107 mm /gps/particle e-/gps/ene/type Lin /gps/ene/gradient 0.00001 /gps/ene/min 6 GeV /gps/ene/max 18 GeV

Update geometry to match project and all future changes Moving B2eR out of cryostat Virtual tracking detectors placed in beampipe.

Current Beamline: Beamspot off center of Q3eR (ID5)

Updated Beamline: Nicely centered beam

	Radius	End	Opening
Original	47.60 mm	4560.17 mm	10.4 mrad
Current	31 mm	4544.49 mm	6.8 mrad

Without benchmark in place acceptance change from smaller central beampipe wasn't identified at the time

Low-Q2 Detector Benchmark results

Flag Failure in Github CI by any step returning non 0 value

Steering fail on:

- Missing beamline electrons in any virtual plane
- Beam offset from center of magnets (not yet)

Acceptance failure on.

• Large fractional acceptance change in drift volume (not yet)

Artefacts from current benchmarks being run: Beamline benchmark artefacts

Several improvements planned including better formatted plots, geometry pictures and explanation report.

Low-Q2 Electron Reconstruction

Check Neural Network reconstruction of Low-Q2 scattered electron for CI changes.

Reuse events from acceptance benchmark run.

Feed in position and momentum of virtual hits before drift volume. Check reconstruction offsets and resolutions.

- If offset or resolution too high.
 - Run EICRecon on sample producing tagger tracks -(MC virtual tracker hits too perfect.)
 - Retrain network on position and momentum of tracks
- If pass after retraining
 - Create PR for epic-data
 - Create PR to branch triggering CI tests updating model

*Still under development.

Physics Benchmarks

Physics Benchmarks

Process kinematics - extract physics

Reaction in variant mass W Invariant mass of meson particles Invariant mass of baryon particles Production t distribution Centre-of-Mass production angles Decay product angular distributions

Exclusivity - reduce backgrounds

```
* Tagger + Central
=> detect tagger e- + meson decay particles
=> reconstruct missing baryon
=> missing mass, missing momentum
(as reactions generally small t, missing momentum ~= proton beam)
* Tagger + Central + FarForward
```

```
As above + proton
```

- 4 constraints from energy and momentum conservation
- can define many variables, but only 4 independent

RAD - Reaction Aware DataFrames

Extend RDataFrame to automate analysis of reactions Only depends on ROOT and RAD <u>https://github.com/dglazier/epic-rad</u>

- Identify final state particles (Filter)
- Associate them with Top and Bottom vertices (Define)
- Calculate Photon Kinematics
- Calculate Production Kinematics
- Calculate Top/Bottom Intermediate states
- 13 Calculate Top/Bottom Decay Kinematics

* RAD Core is experiment independent clas12-rad built on top of this too

Reaction Aware DataFrames

epic.setScatElectronIndex(useNthOccurance(1,11),{"tru_pid"}); epic.setParticleIndex("pip",useNthOccurance(1,211),{"tru_pid"}); epic.setParticleIndex("pim",useNthOccurance(1,-211),{"tru_pid"}); epic.setParticleIndex("prot",useNthOccurance(1,2212),{"tru_pid"});

epic.setBaryonParticles({"prot"});

epic.Particles().Sum("rho",{"pip","pim"});
epic.setMesonParticles({"pip","pim"});

//masses column name, {+ve particles}, {-ve particles}
rad::rdf::MissMass(epic,"W","{scat_ele}");
rad::rdf::MissMass(epic,"MissMass","{scat_ele,pip,pim,prot}");
rad::rdf::MissMass(epic,"MissMassRho","{scat_ele,pip,pim}");
rad::rdf::Mass(epic,"RhoMass","{pip,pim}");
rad::rdf::Mass(epic,"DppMass","{pip,prot}");
rad::rdf::Mass(epic,"D0Mass","{pim,prot}");

//t distribution, column name

rad::rdf::TTop(epic,"t_top"); rad::rdf::TBot(epic,"t_bot"); rad::rdf::TPrimeTop(epic,"tp_top"); rad::rdf::TPrimeBot(epic,"tp_bot");

//CM production angles rad::rdf::CMAngles(epic,"CM");

rad::rdf::Q2(epic,"Q2");

//decay angles

rad::rdf::gn2s0s0s12::HelicityAngles(epic,"Heli");

Physics Benchmarks for pull request

Physics Benchmarks - LowQ2 - Link

. . .

```
Just use 1000 \rho production events (elSpectro)
Generic benchmarking framework based on RAD
Use truth matching of tracks - not testing PID, just best case
Can give pairs of meson and baryon PDGs (for different final states)
Currently just use recon. e-' + \pi+\pi- and missing proton/baryon
```

ReactionBenchmarks excTaggHists{"ExcTagger", mesons[ipy], baryons[ipy]}; e.g. {221,-211}, {``'}
//Define each variable we wish to benchmark with histogram model
excTaggHists.AddVar("Q2", {"Q2", 200,0,0.05}, {200,-0.0005,0.0005}); Define histogram models
excTaggHists.AddVar("W", {"W", 200,0,1.1*WMax});
And opt. resolution models
For each variable

```
ReactionBenchmarks will create :
basic distributions , truth/recon;
efficencies and resolutions for each Var
```

Physics Benchmarks - LowQ2 pull request - Artifacts -Link

Common Bench - test_against

EIC / benchmarks / common_bench

C common_bench

Develop new class from common_bench framework

Targets for current tests are taken from prior reference results file

Each variable added to ReactionBenchmark generates a resolution test

Results of Gaus fit used for current result

benchmark against.h file Link

namespace common_bench {
 //want to create benchmark tests for each variable
 //either from scratch or using a previous test as target value

class test_against {

public:

test_against(const std::string& oldfile,double tolerance=1.01)

Example from CI job

Result	of	test	Q2_res"pass" 1.29131e-05 < 1.87258e-05
Result	of	test	W_res"fail" 0.749117 < 0.52525
Result	of	test	Whad_res"fail" 0.749117 < 0.52525
Result	of	test	MissMass2_res"fail" 1.74777e-13 < 1.7088e-13
Result	of	test	MissMassMeson2_res"fail"
Result	of	test	MissMassBaryon2_res"fail" 0.0119207 < 0.00583133
Result	of	test	MesonMass_res"fail" 0.00690449 < 0.00435625
Result	of	test	BaryonMass_res"pass" 8.35832 < 9.56259
Result	of	test	tt_res"fail" 0.0902027 < 0.064122
Result	of	test	tb_res"fail" 0.092183 < 0.0664826

Main Distributions

ExcTagger Meson{ π +, π -}{} Truth (Blue) vs Reconstructed (Red)

Basic distributions : Invariant masses Production kinematics

Resolutions

ExcTagger Meson{\u03c0+,\u03c0-} Fit to (Reco - Truth)

Resolutions : Invariant masses Production kinematics

Main Distributions

ExcTagger Meson{ π +, π -}{} Truth (Blue) vs Reconstructed (Red)

Basic distributions : Exclusivity

Resolutions

ExcTagger Meson{\u03c0+,\u03c0-} Fit to (Reco - Truth)

Resolutions :

Exclusivity

Main Distributions

ExcTagger Meson{\u03c0+,\u03c0+2} Truth (Blue) vs Reconstructed (Red)

Resolutions

ExcTagger Meson{\\pi +,\pi -}{} Fit to (Reco - Truth)

Resolutions :

Electron Momentum

Physics Benchmarks for campaigns

Same RAD and eic/physics_benchmarks framework applies Run on lowQ2 Pythia data from simulation campaigns (25.05.0) 1/50 runs Select e-' + π + π - + p' via

MCParticles - isolate exclusive and inclusive 2π reactions from Pythia

LowQ2 Tagger - Exclusivity

For small t production Missing momentum gives handle on exclusivity Significant peak Requires sufficient resol.

Missing mass gives some limited discrimination

* exclusive/inclusive defined on truth info.

LowQ2 Tagger + Far Forward

Take difference p, θ, ϕ in calc. Proton(e' π + π -) and measured in FF

Good discrimination of exclusive to inclusive

Total missing mass also useful

* exclusive/inclusive defined on truth info.

Summary

- Low-Q2 Tagger and Physics benchmarks advanced and making good progress.
- Detector benchmarks in place to track changes.
- Nearly ready to run and replace reconstruction model on geometry change.
- Physics benchmark tracking rho resolutions in branch.
- Demonstration of exclusivity separation from Low-Q2 Pythia samples.
- RAD new powerful analysis tool.
 - Simple to run multiple physics analysis simultaneously.
 - More features than demonstrated here.
 - Encourage new users to carry out analysis and request features.

Thank You